Skip to main content
Log in

Dynamics in Affinity-Weighted Preferential Attachment Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

During the formation process of stochastic networks, nodes tend to establish edges based on selective linkage mechanisms. In general, these mechanisms involve probability distributions that underlie the selection of target nodes. In social networks, edges are often associated to relationships that are homophilic with respect to individual traits. Such traits include, for example, gender and age, and are referred to as node types. Our work considers an affinity-weighted preferential attachment model that characterizes the tendency of two group of nodes to connect to other nodes of the same type. We derive mathematical expressions for the dynamics and convergence of homophily measures at the node, group, and network level. Furthermore, we characterize the convergence of network modularity and show that the formation of community structures can be expressed as a function of network homophily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Jackson, M.O., Rogers, B.W.: Meeting strangers and friends of friends: how random are social networks? Am. Econ. Rev. 97(3), 890 (2007)

    Article  Google Scholar 

  3. Bianconi, G., Barabási, A.L.: Competition and multiscaling in evolving networks. Europhys. Lett. 54(4), 436 (2001)

    Article  ADS  Google Scholar 

  4. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633 (2000)

    Article  ADS  Google Scholar 

  5. Kim, K., Altmann, J.: Effect of homophily on network formation. Commun. Nonlinear Sci. Numer. Simul. 44, 482 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bramoullé, Y., Currarini, S., Jackson, M.O., Pin, P., Rogers, B.W.: Homophily and long-run integration in social networks. J. Econ. Theory 147(5), 1754 (2012)

    Article  MathSciNet  Google Scholar 

  7. Karimi, F., Génois, M., Wagner, C., Singer, P., Strohmaier, M.: Homophily influences ranking of minorities in social networks. Sci. Rep. 8(11077), 1 (2018)

    Google Scholar 

  8. Lee, E., Karimi, F., Wagner, C., Jo, H.H., Strohmaier, M., Galesic, M.: Homophily and minority-group size explain perception biases in social networks. Nat. Hum. Behav. 3(10), 1078 (2019)

    Article  Google Scholar 

  9. Fernandez, I., Passino, K., Finke, J.: in Proceeding of the Conference on Decision and Control, pp. 0743–1546. Australia, Melbourne (2017)

  10. Growiec, K., Growiec, J., Kamiński, B.: Social network structure and the trade-off between social utility and economic performance. Soc. Netw. 55, 31 (2018)

    Article  Google Scholar 

  11. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)

    Article  ADS  Google Scholar 

  12. Liu, Y., Wei, B., Du, Y., Xiao, F., Deng, Y.: Identifying influential spreaders by weight degree centrality in complex networks. Chaos Solitons Fractals 86, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wu, Q., Chen, S.: Mean field theory of epidemic spreading with effective contacts on networks. Chao Solitons Fractals 81, 359 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Price, D.D.S.: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27(5), 292 (1976)

    Article  Google Scholar 

  15. Burt, R.S.: Attachment, decay, and social network. J. Org. Behav. 22(6), 619 (2001)

    Article  Google Scholar 

  16. Krackhardt, D.: The Strength of Strong Ties: The Importance of Philos in Organizations, pp. 216–239. Harvard Business School Press, Boston (1992)

    Google Scholar 

  17. Abbasi, A., Hossain, L., Leydesdorff, L.: Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. J. Informet. 6(3), 403 (2012)

    Article  Google Scholar 

  18. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415 (2001)

    Article  Google Scholar 

  19. Fortunato, S., Flammini, A., Menczer, F.: Scale-free network growth by ranking. Phys. Rev. Lett. 96(21), 218701 (2006)

    Article  ADS  Google Scholar 

  20. Huang, Y., Shen, C., Contractor, N.S.: Distance matters: exploring proximity and homophily in virtual world networks. Decis. Support Syst. 55(4), 969 (2013)

    Article  Google Scholar 

  21. Zadorozhnyi, V., Yudin, E.: Growing network: models following nonlinear preferential attachment rule. Physica A 428, 111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Santiago, A., Benito, R.: Evolution of heterogeneous networks under preferential attachment. Int. J. Bifurcation Chaos 20(3), 923 (2010)

    Article  ADS  Google Scholar 

  23. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: In: Proceedings of the 5th ACM/Usenix Internet Measurement Conference (San Diego, CA, 2007), IMC ’07, pp. 29–42 (2007)

  24. Jadidi, M., Karimi, F., Lietz, H., Wagner, C.: Gender Disparities In Science? Dropout, Productivity, Collaborations And Success Of Male And Female Computer Scientists. Advances in Complex Systems 21(03n04) (2018)

  25. Guerrero, K., Finke, J.: in Proceedings of the Conference on Decision and Control, pp. 2318–2323. Australia, Melbourne (2017)

  26. Currarini, S., Jackson, M.O., Pin, P.: An economic model of friendship: homophily, minorities, and segregation. Econometrica 77(4), 1003 (2009)

    Article  MathSciNet  Google Scholar 

  27. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  28. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Ruiz.

Additional information

Communicated by Pierpaolo Vivo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Note that \(\beta _1+\beta _2=2m\). In particular, according to Eq. (8), we know that

$$\begin{aligned} \beta _1&=mp_1+\frac{mp_1q}{2q-1+\frac{2(1-q)}{\alpha _1}}+\frac{mp_2(1-q)}{1-2q+\frac{2q}{\alpha _1}},\\ \beta _2&=mp_2+\frac{mp_2q}{2q-1+\frac{2(1-q)}{\alpha _2}}+\frac{mp_1(1-q)}{1-2q+\frac{2q}{\alpha _2}}, \end{aligned}$$

where

$$\begin{aligned} \alpha _1&=p_1+\frac{p_1q}{2q-1+\frac{1-q}{p_1}}+\frac{p_2(1-q)}{1-2q+\frac{q}{p_1}},\\ \alpha _2&=p_2+\frac{p_2q}{2q-1+\frac{1-q}{p_2}}+\frac{p_1(1-q)}{1-2q+\frac{q}{p_2}}. \end{aligned}$$

First, note that \(\alpha _1+\alpha _2=2\). In particular, because \(p_2=1-p_1\), we know that

$$\begin{aligned} \frac{q}{2q-1+\frac{1-q}{p_1}}+\frac{1-q}{1-2q+\frac{q}{p_2}}&=\frac{p_1q}{(2q-1)p_1+1-q}+\frac{(1-p_1)(1-q)}{(1-2q)(1-p_1)+q}=1.\\ \end{aligned}$$

Similarly, we can show that

$$\begin{aligned} \frac{q}{2q-1+\frac{1-q}{p_2}}+\frac{1-q}{1-2q+\frac{q}{p_1}}=1, \end{aligned}$$

and so \(\alpha _1+\alpha _2=2(p_1+p_2)=2\). Second, since \(\alpha _2=2-\alpha _1\), we have

$$\begin{aligned} \frac{q}{2q-1+\frac{2(1-q)}{\alpha _2}}+\frac{1-q}{1-2q+\frac{2q}{\alpha _1}}&=\frac{q}{2q-1+\frac{2(1-q)}{2-\alpha _1}}+\frac{1-q}{1-2q+\frac{2q}{\alpha _1}}\\&=\frac{(2-\alpha _1)q}{(2q-1)(2-\alpha _1)+2-2q}+\frac{\alpha _1(1-q)}{(1-2q)\alpha _1+2q}\\&=1. \end{aligned}$$

Similarly

$$\begin{aligned} \frac{q}{2q-1+\frac{2(1-q)}{\alpha _1}}+\frac{1-q}{1-2q+\frac{2q}{\alpha _2}}=1. \end{aligned}$$

So

$$\begin{aligned} \frac{mp_1q}{2q-1+\frac{2(1-q)}{\alpha _1}}+\frac{mp_1(1-q)}{1-2q+\frac{2q}{\alpha _2}}&=mp_1,\\ \frac{mp_2q}{2q-1+\frac{2(1-q)}{\alpha _2}}+\frac{mp_2(1-q)}{1-2q+\frac{2q}{\alpha _1}}&=mp_2, \end{aligned}$$

and thus \(\beta _1+\beta _2=2m(p_1+p_2)=2m\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, D., Campos, J. & Finke, J. Dynamics in Affinity-Weighted Preferential Attachment Networks. J Stat Phys 181, 673–689 (2020). https://doi.org/10.1007/s10955-020-02594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02594-0

Keywords

Navigation