Skip to main content
Log in

Plasmonic band-gap filter by using tapered waveguide

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A new design of a plasmonic band-gap filter, based on the metal–insulator–metal structure is proposed and simulated by the finite element method (FEM). Different parts of the filter are laid on a silver substrate which consists of a tapered silicon waveguide and two ring resonators for signal trapping in a predefined range. By using the concept of mode compression in a tapered waveguide and power coupling to peripheral rings, several important results have been found. The filtering action of the structure, between 800–1800 nm, can be tuned by structural parameters engineering, such as waveguide/ring dimensions and indices. Considering a linear relationship between the refractive index and the resonant wavelengths, it was shown that there was a red-shift for various dips when the waveguide and ring indices were increased. The proposed structure has the unique quality of having high amplitudes for the portion of the passed waves and very low amplitudes for the rejected parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. S A Maier, in Plasmonics: Fundamentals and Applications 1, 245 (Springer, New York, 2007)

    Google Scholar 

  2. Z Han and S He, Opt. Commun. 278, 199 (2007)

    Article  ADS  Google Scholar 

  3. W L Barnes, A Dereux and T W Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  4. W Li, Z Qin, Y Wang, L Ye and Y Liu, J. Phys. D: Appl. Phys. 52, 365303 (2019)

    Article  Google Scholar 

  5. D K Gramotnev and S I Bozhevolnyi, Nat. Photonics 4(2), 83 (2010)

    Article  ADS  Google Scholar 

  6. A L Falk, F H Koppens, C L Yu, K Kang, N de Leon Snapp, A V Akimov, M H Jo, M D Lukin and H Park, in Proceedings of the Fourth European Conference on Antennas and Propagation (pp. 1–5), IEEE (2010)

  7. E Ozbay, Science 311, 189 (2006)

    Article  ADS  Google Scholar 

  8. M Ozaki, J Kato and S Kawata, Science 332, 218 (2011)

    Article  ADS  Google Scholar 

  9. R Zia, J A Schuller, A Chandran and M L Brongersma, Mater. Today 9, 20 (2006)

    Article  Google Scholar 

  10. S Kawata, Y Inouye and P Verma, Nat. Photonics 3, 388 (2009)

    Article  ADS  Google Scholar 

  11. Z Fang, Q Peng, W Song, F Hao, J Wang, P Nordlander and X Zhu, Nano Lett. 11, 893 (2011)

    Article  ADS  Google Scholar 

  12. Z Fang, L Fan, C Lin, D Zhang, A J Meixner and X Zhu, Nano Lett. 11, 1676 (2011)

    Article  ADS  Google Scholar 

  13. Z Li, Y Li, T Han, X Wang, Y Yu, B Tay, Z Liu and Z Fang, ACS Nano 11, 1165 (2017)

    Article  Google Scholar 

  14. L Ye, Y Chen, K Da Xu, W Li, Q H Liu and Y Zhang, IEEE Access. 7, 75957 (2019)

    Article  Google Scholar 

  15. M Zheng, H Li, Z Chen, H Xu, M Zhao and C Xiong, IEEE Photon. Technol. Lett. 30, 415 (2018)

    Article  ADS  Google Scholar 

  16. Y Gong, X Liu and L Wang, Opt. Lett. 35, 285 (2010)

    Article  ADS  Google Scholar 

  17. Q H Phan, N Nguyen-Huu and Y L Lo, IEEE Sens. J. 14, 2938 (2014)

    Article  ADS  Google Scholar 

  18. X Ren, K Ren and Y Cai, Appl. Opt. 56, H1 (2017)

    Article  Google Scholar 

  19. Z Han, L Liu and E Forsberg, Opt. Commun. 259, 690 (2006)

    Article  ADS  Google Scholar 

  20. X Wang, P Wang, C Chen, J Chen, Y Lu, H Ming and Q Zhan, Int. J. Appl. Phys. 107, 124517 (2010)

    Article  ADS  Google Scholar 

  21. Z Chen, J Chen, Y Li, D Pan, W Lu, Z Hao, J Xu and Q Sun, IEEE Photonics Technol. Lett. 24, 1366 (2012)

    Article  ADS  Google Scholar 

  22. M Bahramipanah, M S Abrishamian, S A Mirtaheri and J M Liu, Sens. Actuators B: Chem. 194, 311 (2014)

    Article  Google Scholar 

  23. E Rafiee, R Negahdari and F Emami, Photonics Nanostruct. Fundam. Appl. 33, 21 (2019)

    Article  ADS  Google Scholar 

  24. M Pav, N Granpayeh, S P Hosseini and A Rahimzadegan, Opti. Commun. 437, 285 (2019)

    Article  ADS  Google Scholar 

  25. L Ye, W Zhang, B K Ofori-Okai, W Li, J Zhuo, G Cai and Q H Liu, J. Lightwave Technol. 36, 4988 (2018)

    Article  ADS  Google Scholar 

  26. S Khani, M Danaie and P Rezaei, Opt. Commun. 420, 147 (2018)

    Article  ADS  Google Scholar 

  27. D Liu, J Wang, F Zhang, Y Pan, J Lu and X Ni, Sensors 17, 585 (2017)

    Article  ADS  Google Scholar 

  28. R K Jaiswal, N Pandit and N P Pathak, in 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM) pp. 1–5, IEEE (2017)

  29. Y Han, J Yang, X He, Y Yu, D Chen, J Huang, Z Zhang, J Zhang and S Xu, Opt. Commun. 445, 64 (2019)

    Article  ADS  Google Scholar 

  30. J M Pitarke, V M Silkin, E V Chulkov and P M Echenique, Rep. Prog. Phys. 70, 1 (2007)

    Article  ADS  Google Scholar 

  31. J Zhang, L Zhang and W Xu, J. Phys. D: Appl. Phys. 45, 113001 (2012)

    Article  ADS  Google Scholar 

  32. A V Zayats, I I Smolyaninov and A A Maradudin, Phys. Rep. 408, 131 (2004)

    Article  ADS  Google Scholar 

  33. I P Kaminow, W L Mammel and H P Weber, Appl. Opt. 13, 396 (1974)

    Article  ADS  Google Scholar 

  34. I Wolff and N Knoppik, Electron. Lett. 7, 779 (1971)

    Article  ADS  Google Scholar 

  35. E Rafiee and F Emami, Optik 140, 873 (2017)

    Article  ADS  Google Scholar 

  36. E Rafiee and F Emami, Optik 127, 1690 (2016)

    Article  ADS  Google Scholar 

  37. T B Wang, X W Wen, C P Yin and H Z Wang, Opt. Express 17, 24096 (2009)

    Article  ADS  Google Scholar 

  38. Z Han, E Forsberg and S He, IEEE Photon. Technol. Lett. 19(2), 91 (2007)

    Article  ADS  Google Scholar 

  39. T Zentgraf, T P Meyrath, A Seidel, S Kaiser, H Giessen, C Rockstuhl and F Lederer, Phys. Rev. B 76, 033407 (2007)

    Article  ADS  Google Scholar 

  40. J Chen, Y Li, Z Chen, J Peng, J Qian, J Xu and Q Sun, IEEE Photonics J. 6, 1 (2014)

    Google Scholar 

  41. E F Schubert, J K Kim and J Q Xi, Phys. Status Solidi B 244, 3002 (2007)

    Article  ADS  Google Scholar 

  42. M R Rakhshani and M A Mansouri-Birjandi, IEEE Sens. J. 16, 3041 (2016)

    Article  ADS  Google Scholar 

  43. E Rafiee, F Emami and N Nozhat, Opt. Eng. 53, 123108 (2014)

    Article  ADS  Google Scholar 

  44. Y Liang, S Zhang, X Cao, Y Lu and T Xu, Sci. Rep. 7(1), 1 (2017)

    Article  ADS  Google Scholar 

  45. Z Zhang, J Yang, X He, Y Han, J Zhang, J Huang and D Chen, Appl. Sci. 8(3), 462 (2018)

    Article  ADS  Google Scholar 

  46. L Hajshahvaladi, H Kaatuzian and M Danaie, Opt. Quantum Electron. 51, 1 (2019)

    Article  Google Scholar 

  47. Y Qi, P Zhou, T Zhang, X Zhang, Y Wang, C Liu, Y Bai and X Wang, Results Phys. 14, 102506 (2019)

    Article  Google Scholar 

  48. M Wang, M Zhang, Y Wang, R Zhao and S Yan, Sensors 19, 791 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Emami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, S., Emami, F. Plasmonic band-gap filter by using tapered waveguide. Pramana - J Phys 97, 176 (2023). https://doi.org/10.1007/s12043-023-02592-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02592-3

Keywords

PACS No

Navigation