Skip to main content
Log in

A new structure of stochastic solutions to the NLSE in unstable dispersive environments via Rayleigh distribution

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The unstable nonlinear Schrödinger equation (UNLSE) characterises the time evolution of disturbances through unstable or marginally stable media. We study the stochastic UNLSE and stochastic modified UNLSE (mUNLSE). We apply the unified solver to provide some new stochastic solutions via Rayleigh distribution. The gained stochastic solutions play a crucial role in nonlinear sciences. Rayleigh distribution is used to depict the dispersion random input. In light of description of the behaviour of stochastic solutions, their mean and variance are illustrated. We show the influence of random parameters on the gained stochastic solutions. With the aid of Maple software, various profile pictures are introduced to exhibit the dynamical behaviour of the stochastic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M A E Abdelrahman and M A Sohaly, Eur. Phys. J. Plus 132, 339 (2017)

    Article  Google Scholar 

  2. M A E Abdelrahman and M A Sohaly, Indian J. Phys. 93, 903 (2019)

    Article  ADS  Google Scholar 

  3. Y F Alharbi, M A E Abdelrahman, M A Sohaly and M Inc, Eur. Phys. J. Plus 135, 368 (2020)

    Article  Google Scholar 

  4. J H Choi, H Kim and R Sakthivel, J. Math. Chem. 52, 2482 (2014)

    Article  MathSciNet  Google Scholar 

  5. H Kim, R Sakthivel, A Debbouche and D F Torres, Chaos Solitons Fractals 131, 109542 (2021)

    Article  Google Scholar 

  6. C Forbes, M Evans, N Hastings and B Peacock, Statistical distributions (John Wiley and Sons, 2011)

  7. F Dalfovo, S Giorgini, L P Pitaevskii and S Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  8. K Nakkeeran, Chaos Solitons Fractals 13, 673 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. H Triki, C Bensalem, A Biswas, S Khan, Q Zhou, S Adesanya, S P Moshokoa and M Belic, Opt. Commun. 437, 392 (2019)

    Article  ADS  Google Scholar 

  10. H G Abdelwahed, E K El-Shewy, M A E Abdelrahman and A F Alsarhana, Results Phys. 21, 103798 (2021)

    Article  Google Scholar 

  11. T Cazenave and P L Lions, Commun. Math. Phys. 85, 549 (1982)

    Article  ADS  Google Scholar 

  12. B Feng and H Zhang, Comput. Math. Appl. 75, 2499 (2018)

    Article  MathSciNet  Google Scholar 

  13. B Feng and H Zhang, J. Math. Anal. Appl. 460, 352 (2018)

    Article  MathSciNet  Google Scholar 

  14. V E Zakharov and L A Ostrovsky, Physica D 238, 540 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. K L Henderson, D H Peregrine and J W Dold, Wave Motion 29, 341 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. S K El-Labany, E K El-Shewy, H N Abd-El-Razek and A A El-Rahman, Plasma Phys. Rep. 43, 576 (2017)

    Article  ADS  Google Scholar 

  17. S A Elwakil, A M El-hanbaly, A Elgarayh, E K El-Shewy and A I Kassem, Adv. Space Res. 54, 1786 (2014)

    Article  ADS  Google Scholar 

  18. K Hosseini, D Kumar, M Kaplan and E Y Bejarbaneh, Theor. Phys. 68, 761 (2017)

    ADS  Google Scholar 

  19. K Hosseini, A Zabihi, F Samadani and R Ansari, Opt. Quant. Electron. 50, 82 (2018)

    Article  Google Scholar 

  20. M A E Abdelrahman and N F Abdo, Phys. Scr. 95, 045220 (2020)

    Article  ADS  Google Scholar 

  21. M Arshad, A R Seadawy, D Lu and W Jun, Results Phys. 7, 4153 (2017)

    Article  ADS  Google Scholar 

  22. K Hosseini, D Kumar, M Kaplan and E Y Bejarbaneh, Commun. Theor. Phys. 68, 761 (2017)

    Article  ADS  Google Scholar 

  23. D Lu, A R Seadawy and M Arshad, Optik 140, 136 (2017)

    Article  ADS  Google Scholar 

  24. M Pawlik and G Rowlands, J. Phys. C 8, 1189 (1975)

    Article  ADS  Google Scholar 

  25. M M Wadati, H Segur and M J Ablowitz, J. Phys. Soc. Jpn. 61, 1187 (1992)

    Article  ADS  Google Scholar 

  26. J He, S Xu and K Porseizan, Phys. Rev. E 86, 066603 (2012)

    Article  ADS  Google Scholar 

  27. S Trillo and S Wabnitz, Opt. Lett. 16, 986 (1996)

    Article  ADS  Google Scholar 

  28. S K El-Labany, E K El-Shewy, N A El-Bedwehy, H N Abd-El-Razek and A A El-Rahman, Indian J. Phys. 91, 337 (2017)

    Article  ADS  Google Scholar 

  29. J Fatome, S Pitois and G Millot, IEEE J. Quantum Electron. 42, 1038 (2006)

    Article  ADS  Google Scholar 

  30. M A E Abdelrahman and H AlKhidhr, Results Phys. 18, 103294 (2020)

    Article  Google Scholar 

  31. S Hawkins, H Burcharth, B Zanuttigh and A Lamberti, Environmental design guidelines for low crested coastal structures (Elsevier Science, 2010)

    Google Scholar 

  32. M A E Abdelrahman, Nonlinear Eng. 7, 279 (2018)

    Article  ADS  Google Scholar 

  33. S Z Hassan and M A E Abdelrahman, Pramana – J. Phys. 91, 67 (2018)

    Article  ADS  Google Scholar 

  34. D Kumar, J Singh, D Baleanu and S Rathore, Eur. Phys. J. Plus 133, 259 (2018)

    Article  Google Scholar 

  35. T Li, N Pintus and G Viglialoro, Z. Angew. Math. Phys. 70, 1 (2019)

    Google Scholar 

  36. T Li and G Viglialoro, Diff. Int. Equs. 34, 315 (2021)

    Google Scholar 

  37. M Marras, S V Piro and G Viglialoro, Kodai Math. J. 37, 532 (2014)

    Article  MathSciNet  Google Scholar 

  38. G Viglialoro, Diff. Int. Equs. 29, 359 (2016)

  39. S Frassu, T Li and G Viglialoro, Math. Methods Appl. Sci. 45, 11067 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  40. S Frassu, R R Galván and G Viglialoro, Disc. Contin. Dyn. Syst. Ser. B 28, 1886 (2023)

    Article  Google Scholar 

  41. N Akhmediev, A Ankiewic and M Taki, Phys. Lett. A 373, 675 (2009)

    Article  ADS  Google Scholar 

  42. Y Deng, J Yang, X Tian, X Li and L Xiao, Ocean Eng. 118, 83 (2016)

    Article  Google Scholar 

  43. A Chabchoub, N P Hoffmann and N Akhmediev, Phys. Rev. Lett. 106, 204502 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A E Abdelrahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, M.A.E., Sohaly, M.A. & Alharbi, Y.F. A new structure of stochastic solutions to the NLSE in unstable dispersive environments via Rayleigh distribution. Pramana - J Phys 97, 118 (2023). https://doi.org/10.1007/s12043-023-02591-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02591-4

Keywords

PACS Nos

Navigation