Skip to main content
Log in

The deformed modified Korteweg–de Vries equation: Multi-soliton solutions and their interactions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate how Hirota’s bilinear method can be employed to derive single-soliton, two-soliton and three-soliton solutions of the deformed modified Korteweg–de Vries (KdV) equation. We note that the derived soliton solutions depend on the time-dependent function, revealing that the speed of the soliton solutions no longer explicitly depends on wave amplitude. Finally, we graphically demonstrate the evolution of multi-soliton solutions and their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M J Ablowitz and P A Clarkson, Solitons, nonlinear evolution equations and inverse scattering (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  2. M J Ablowitz and H Segur, Std. Appl. Math. (1981)

  3. T Brugarinoa and M Sciacca, Opt. Commun. 262, 250 (2006)

    Article  ADS  Google Scholar 

  4. A Hasegawa and Y Kodama, Solitons in optical communications (Oxford University Press, Oxford, 1995)

    MATH  Google Scholar 

  5. M Lakshmanan and S Rajasekar, Nonlinear dynamics: Integrability, chaos and patterns (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  6. P D Lax, Commun. Pure Appl. Math. 21, 467 (1968)

    Article  Google Scholar 

  7. A M Wazwaz, Partial differential equations and solitary waves theory (Springer and HEP, Berlin, 2009)

    Book  MATH  Google Scholar 

  8. A Kundu, J. Math. Phys. 50, 102702 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. A Kundu, J. Math. Phys. 51, 022901 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  10. A Kundu, R Sahadevan and L Nalinidevi, J. Phys: A Math. Theor. 42, 115213 (2009)

    ADS  Google Scholar 

  11. S Suresh Kumar, Integrability aspects of deformed fourth-order nonlinear Schrödinger equation, in: D Dutta and B Mahanty (Eds), Numerical optimzation in engineering and sciences, advances in intelligent systems and computing (Springer, Singapore, 2020) Vol. 979

  12. S Suresh Kumar, S Balakrishnan and R Sahadevan, Nonlinear Dyn. 90, 2783 (2017)

  13. S Suresh Kumar and R Sahadevan, Int. J. Appl. Comput. Math. 5, 22 (2019)

  14. S Suresh Kumar and R Sahadevan, Int. J. Appl. Comput. Math. 6, 19 (2020)

  15. S Suresh Kumar and R Sahadevan, Pramana – J. Phys. 94, 140 (2020)

  16. A H Khater, O H El-Kakaawy and D K Callebaut, Phys. Scr. 58, 545 (1998)

    Article  ADS  Google Scholar 

  17. T Kakutani and H Ono, J. Phys. Soc. Jpn. 26(5), 1305 (1969)

    Article  ADS  Google Scholar 

  18. K E Lonngren, Opt. Quantum Electron. 30, 615 (1998)

    Article  Google Scholar 

  19. S Watanabe, J. Phys. Soc. Jpn. 53, 950 (1984)

    Article  ADS  Google Scholar 

  20. K Konno and Y H Ichikawa, J. Phys. Soc. Jpn. 37, 1631 (1974)

    Article  ADS  Google Scholar 

  21. H Leblond and D Mihalache, Phys. Rep. 523, 61 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  22. H Leblond and F Sanchez, Phys. Rev. A 67, 013804 (2003)

    Article  ADS  Google Scholar 

  23. H Leblond, H Triki and D Mihalache, Rom. Rep. Phys. 65(3), 925 (2013)

    Google Scholar 

  24. K R Helfrich, W K Melville and J W Miles, J. Fluid Mech. 149, 305 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  25. T L Perel’man, A Kh Fridman and M M EI’yashevich, Sov. Phys. JETP 39(4) (1974)

  26. H Ono, J. Phys. Soc. Jpn. 61, 4336 (1992)

    Article  ADS  Google Scholar 

  27. T S Komatsu and S I Sasa, Phys. Rev. E 52, 5574 (1995)

    Article  ADS  Google Scholar 

  28. T Nagatani, Physica A 264, 581 (1999)

    Article  ADS  Google Scholar 

  29. H Song, H Ge, F Chen and R Cheng, Nonlinear Dyn. 87, 1809 (2017)

    Article  Google Scholar 

  30. H X Ge, S Q Dai, Y Xue and L Y Dong, Phys. Rev. E 71, 066119 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  31. Z-P Li and Y-C Liu, Eur. Phys. J. B 53, 367 (2006)

  32. B Cushman-Roisin, L J Pratt and E A Ralph, J. Phys. Oceangr. 23, 91 (1992)

    Article  ADS  Google Scholar 

  33. E A Ralph and L Pratt, J. Nonlinear Sci. 4, 355 (1994)

    Article  ADS  Google Scholar 

  34. V Ziegler, J Dinkel, C Setzer and K ELonngren, Chaos Solitons Fractals 12, 1719 (2001)

  35. H Leblond, P Grelu and D Mihalache, Phys. Rev. A 90, 053816 (2014)

    Article  ADS  Google Scholar 

  36. J Langer and R Perline, Phys. Lett. A 239, 36 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  37. E G Shurgalina and E N Pelinovksy, Phys. Lett. A 380, 2049 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  38. M Wadati, J. Phys. Soc. Jpn. 32, 1681 (1972)

    Article  ADS  Google Scholar 

  39. M Wadati, J. Phys. Soc. Jpn. 34, 1289 (1973)

    Article  ADS  Google Scholar 

  40. R Hirota, Direct method of finding exact solutions of nonlinear evolution equations, in: R M Miura (Ed.) Bäcklund transformations, the inverse scattering method, solitons and their applications, Lect. Notes Math. (Springer, Berlin, 1976) Vol. 515

  41. J Bi, J. Shanghai Univ. 8(3), 286 (2004)

    Article  MathSciNet  Google Scholar 

  42. R Hirota, The direct method in soliton theory (Cambridge University Press, 2004)

  43. R M Miura, J. Math. Phys. 9, 1202 (1968)

    Article  ADS  Google Scholar 

  44. R M Miura, C S Gardner and M D Kruskal, J. Math. Phys. 9, 1204 (1968)

    Article  ADS  Google Scholar 

  45. K Porsezian, Pramana – J. Phys. 48(1), 143 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  46. R X Yao, C Z Qu and Z Li, Chaos Solitons Fractals 22, 723 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  47. E Yasar, J. Math. Anal. Appl. 363, 174 (2010)

    Article  MathSciNet  Google Scholar 

  48. T C A Yeung and P C W Fung, J. Phys. A 21, 3575 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  49. Z Qi-Lao and L Zhi-Bin, Chin. Phys. Lett. 25, 8 (2008)

    Article  ADS  Google Scholar 

  50. O Alsayyed, F Shatat and H M Jaradat, Adv. Stud. Theor. Phys. 10(1), 45 (2016)

    Article  Google Scholar 

  51. A H Salas, Appl. Math. Comput. 216, 2792 (2010)

    MathSciNet  Google Scholar 

  52. S Zhang and L Zhang, Open Phys. 14(1), 69 (2016)

    Article  ADS  Google Scholar 

  53. J Hietarinta, Introduction to the Hirota bilinear method, in: Y Kosmann-Schwarzbach, B Grammaticos, K M Tamizhmani (Eds), Integrability of nonlinear systems (Springer, Berlin, Heidelberg, 1997) pp. 95–103

Download references

Acknowledgements

The author would like to thank the Management and Principal of C. Abdul Hakeem College (Autonomous), Melvisharam, Ranipet District, Tamil Nadu, India, for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.S. The deformed modified Korteweg–de Vries equation: Multi-soliton solutions and their interactions. Pramana - J Phys 97, 110 (2023). https://doi.org/10.1007/s12043-023-02581-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02581-6

Keywords

PACS

Navigation