Skip to main content
Log in

Periodic solutions of the modified short pulse equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

With the aid of the reciprocal transformation between the modified short pulse (mSP) equation and the sine-Gordon (sG) equation, certain periodic solutions of the mSP equation are constructed. Both one-phase and two-phase periodic solutions are presented. Taking the proper limits of those periodic solutions, various solitary wave solutions such as one-cuspon, two-cuspon and one-breather solutions are recovered. In addition, three novel standing wave solutions for the mSP equation are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. T Schäfer and C E Wayne, Physica D 196, 90 (2004), https://doi.org/10.1016/j.physd.2004.04.007

    Article  ADS  MathSciNet  Google Scholar 

  2. Y Chung, C K R T Jones, T Schäfer and C E Wayne, Nonlinearity 18, 1351 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. G G Gui, Y Liu, P J Olver and C Z Qu, Commun. Math. Phys. 319, 731 (2013), https://doi.org/10.1007/s00220-012-1566-0

    Article  ADS  Google Scholar 

  4. A Sakovich and S Sakovich, J. Phys. Soc. Jpn. 74, 239 (2005), https://doi.org/10.1143/JPSJ.74.239

    Article  ADS  Google Scholar 

  5. J C Brunelli, Phys. Lett. A 353, 475 (2006), https://doi.org/10.1016/j.physleta.2006.01.009

    Article  ADS  MathSciNet  Google Scholar 

  6. H Mao and Q P Liu, Stud. Appl. Math. 145, 791 (2020), https://doi.org/10.1111/sapm.12336

    Article  MathSciNet  Google Scholar 

  7. S Z Liu, L H Wang, W Liu, D Q Qiu and J S He, J. Nonlinear Math. Phys. 24, 183 (2017), https://doi.org/10.1080/14029251.2017.1306947

    Article  MathSciNet  Google Scholar 

  8. M L Rabelo, Stud. Appl. Math. 81, 221 (1989), https://doi.org/10.1002/sapm1989813221

    Article  MathSciNet  Google Scholar 

  9. R Beals, M Rabelo and K Tenenblat, Stud. Appl. Math. 81, 125 (1989), https://doi.org/10.1002/sapm1989812125

    Article  MathSciNet  Google Scholar 

  10. A Sakovich and S Sakovich, J. Phys. A: Math. Gen. 39, L361 (2006), https://doi.org/10.1088/0305-4470/39/22/L03

    Article  ADS  Google Scholar 

  11. Y Matsuno, J. Phys. Soc. Jpn. 76, 084003 (2007), https://doi.org/10.1143/JPSJ.76.084003

    Article  ADS  Google Scholar 

  12. Y Matsuno, J. Math. Phys. 49, 073508 (2008), https://doi.org/10.1016/j.chaos.2006.10.055

    Article  ADS  MathSciNet  Google Scholar 

  13. A Boutet de Monvel, D Shepelsky and L Zielinski, Lett. Math. Phys. 107, 1345 (2017), https://doi.org/10.1007/s11005-017-0945-z

  14. J Xu, J. Differ. Equ. 265, 3494 (2018), https://doi.org/10.1016/j.jde.2018.05.009

  15. S Sakovich, Commnu. Nonlinear Sci. Numer. Simul. 39, 21 (2016), https://doi.org/10.1016/j.cnsns.2016.02.031

    Article  ADS  Google Scholar 

  16. B F Feng, J. Phys. A: Math. Theor. 45, 085202 (2012), https://doi.org/10.1088/1751-8113/45/8/085202

    Article  ADS  Google Scholar 

  17. Y Matsuno, J. Math. Phys. 57, 111507 (2016), https://doi.org/10.1063/1.4967952

    Article  ADS  MathSciNet  Google Scholar 

  18. B L Guo and N Liu, Appl. Anal. 98, 1646 (2019), https://doi.org/10.1080/00036811.2018.1437418

    Article  MathSciNet  Google Scholar 

  19. G Q Bo and W G Zhang, J. Phys. Commun. 2, 115004 (2018)

    Article  Google Scholar 

  20. M Li and Z Y Yin, J. Math. Phys. 58, 101515 (2017), https://doi.org/10.1063/1.5001381

    Article  ADS  MathSciNet  Google Scholar 

  21. M Xue, Q P Liu and H Mao, Eur. Phys. J. Plus 137, 500 (2022), https://doi.org/10.1140/epjp/s13360-022-02710-x

    Article  Google Scholar 

  22. D F Lawden, Elliptic functions and applications (Springer, New York, 1989)

    Article  ADS  Google Scholar 

  23. Y Matsuno, J. Phys. A: Math. Theor. 53, 105202 (2020), https://doi.org/10.1088/1751-8121/ab6f18

    MATH  Google Scholar 

  24. E D Belokolos, A I Bobenko, V Z Enol’skii, A R Its and V B Matveev, Algebro-geometric approach to nonlinear integrable equations (Springer, New York, 1994)

    Article  ADS  Google Scholar 

  25. G L Lamb, Rev. Mod. Phys. 43, 99 (1971), https://doi.org/10.1103/RevModPhys.43.99

    Article  ADS  Google Scholar 

  26. G L Lamb, Elements of soliton theory (Wiley, New York, 1980)

    Article  ADS  Google Scholar 

  27. G Costabile, R D Parmentier, B Savo, D W McLaughlin and A C Scott, Appl. Phys. Lett. 32, 587 (1978), https://doi.org/10.1063/1.90113

    Book  MATH  Google Scholar 

  28. R M DeLeonardis, S E Trullinger and R F Wallis, J. Appl. Phys. 51, 1211 (1980), https://doi.org/10.1063/1.327690

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for the comments and suggestions, which have been useful in revising the paper. This work is supported by the National Natural Science Foundation of China (NNSFC) (Grant Nos 11931017, 11871471 and 12171474), the Scientific Research Start-Up Project of Shanxi Institute of Technology (Grant No. 2021QD-20) and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2021L593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Li.

Appendix A. The definitions and properties of elliptic functions

Appendix A. The definitions and properties of elliptic functions

Here, we list some relevant definitions and properties of elliptic functions. For more details, one may consult the book of Lawden [22].

DEFINITION A.1

The elliptic integral of the first kind is defined as follows:

$$\begin{aligned}{} & {} \textrm{sn}^{-1}(x,k)=u=\int _{0}^{x}{\{(1-t^2)(1-k^2t^2)\}}^{-\frac{1}{2}}\textrm{d}t \nonumber \\{} & {} \quad (0\le x \le 1). \end{aligned}$$
(A.1)

DEFINITION A.2

Jacobi’s elliptic integral E(uk) is defined as

$$\begin{aligned}{} & {} E(u,k)=\int _{0}^{u}{\textrm{dn}^2{v}}\,\textrm{d}v=\int _{0}^{\tau }{\sqrt{\frac{1-k^2t^2}{1-t^2}}}\textrm{d}t\nonumber \\{} & {} \quad (t=\textrm{sin}\,{v},\tau =\textrm{sn}\,{u}). \end{aligned}$$
(A.2)

The periodicity relation is

$$\begin{aligned} E(u+2K,k)=E(u,k)+2E(k). \end{aligned}$$
(A.3)

More generally, if m is an integer, then we have

$$\begin{aligned} E(u+2mK,k)=E( u,k)+2m E(k). \end{aligned}$$
(A.4)

DEFINITION A.3

The first complete elliptic integral is defined as

$$\begin{aligned} K \equiv K(K,k)\equiv K(k)=\int _{0}^{\frac{\pi }{2}}{\frac{1}{\sqrt{1-k^2 \,\textrm{sin}^2{\theta }}}}\textrm{d}\theta . \nonumber \\ \end{aligned}$$
(A.5)

DEFINITION A.4

The second complete elliptic integral is defined as

$$\begin{aligned} E \equiv E(K,k)\equiv E(k)=\int _{0}^{\frac{\pi }{2}}{\sqrt{1-k^2 \,\textrm{sin}^2\,{\theta }}}\,\textrm{d}\theta . \nonumber \\ \end{aligned}$$
(A.6)

As demonstrated in [22], the following formulas hold:

$$\begin{aligned}{} & {} \begin{aligned}&\int {\textrm{cn}^2(u,k)}\textrm{d}u=\frac{1}{k^2}(E(u,k)-k'^2 u),\\&\int {\frac{1}{\textrm{cn}^2(u,k)}}\textrm{d}u=\frac{1}{k'^2}\\&\quad \times \bigg (\frac{\textrm{sn}(u,k)\textrm{dn}(u,k)}{\textrm{cn}(u,k)}-{E(u,k)+k'^2 u}\bigg ), \end{aligned} \end{aligned}$$
(A.7)
$$\begin{aligned}{} & {} \begin{aligned}&\int {\frac{\textrm{sn}^2(u,k)}{\textrm{cn}^2(u,k)}}\textrm{d}u=\frac{1}{k'^2}\\&\quad \times \bigg (\frac{\textrm{dn}(u,k)\textrm{sn}(u,k)}{\textrm{cn}(u,k)}-\int {\textrm{dn}^2(u,k)}\textrm{d}u\bigg ),\\&\int {\frac{1}{\textrm{dn}^2(u,k)}}\textrm{d}u=\frac{1}{k'^2}\\&\quad \times \bigg (-k^2\frac{\textrm{sn}(u,k)\textrm{cn}(u,k)}{\textrm{dn}(u,k)}+\int {\textrm{dn}^2(u,k)}\textrm{d}u\bigg ), \end{aligned} \end{aligned}$$
(A.8)

where \(k'=\sqrt{1-k^2}\).

In the extreme cases \(k = 0, 1\), we have

$$\begin{aligned}&\textrm{sn}(u,0)=\sin u, \end{aligned}$$
(A.9)
$$\begin{aligned}&\textrm{cn}(u,0)=\cos u, \end{aligned}$$
(A.10)
$$\begin{aligned}&\textrm{dn}(u,0)=1, \end{aligned}$$
(A.11)
$$\begin{aligned}&\textrm{sn}(u,1)=\textrm{tanh}\, u, \end{aligned}$$
(A.12)
$$\begin{aligned}&\textrm{cn}(u,1)=\textrm{sech}\, u, \end{aligned}$$
(A.13)
$$\begin{aligned}&\textrm{dn}(u,1)=\textrm{sech}\, u, \end{aligned}$$
(A.14)
$$\begin{aligned}&E(u,1)=\textrm{tanh}(u). \end{aligned}$$
(A.15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, M., Li, Z. & Zhu, Y. Periodic solutions of the modified short pulse equation. Pramana - J Phys 97, 113 (2023). https://doi.org/10.1007/s12043-023-02580-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02580-7

Keywords

PACS

Navigation