Skip to main content
Log in

DFT estimation of structural parameters and band gaps of III–V (GaP, AlP, InP, BP) and II–VI (BeX, MgX, CdX: X\(=\)O, S, Se, Te) semiconductors

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In density functional theory (DFT)-based computational methods, electronic properties at optimised atomic position and lattice constants are calculated for semiconducting materials belonging to III–V (GaP, AlP, InP, BP) and II–VI (BeX, MgX, CdX: X =O, S, Se, Te) groups. This paper reports the calculation of equilibrium lattice constants and bulk moduli of the materials under study using five different DFT functionals LDA, PBE, WC, PBEsol and SCAN. The results show that LDA underestimates while PBE overestimates the experimental lattice constants for all these semiconducting materials studied with a mean absolute relative error (%) of the order of 1%. Such trends in LDA and PBE results agree with the earlier reported work. The lattice constants calculated using WC, PBEsol and SCAN are in better agreement with the experiment compared to optB88vdW functional reported by others. On an average, WC and PBEsol functional have been found to be better in estimating the lattice constants and bulk modulus of II–VI binary compounds. We also present the band-gap calculations of the materials under study using different exchange-correlation functionals. The modified Becke–Johnson approximation suggested by Tran and Blaha is found to provide a better agreement with the experimentally reported results than the standard DFT method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P Hohnberg and W Kohn, Phys. Rev. B 136, 864 (1964)

  2. W Kohn and L J Sham, Phys. Rev. B 140, 1133 (1965)

    Article  ADS  Google Scholar 

  3. F Jensen, Introduction to computational chemistry, 2nd Edn (John Wiley & Sons Ltd., Chichester, 2007)

    Google Scholar 

  4. N Mardirossian and M Head-Gordon, Mol. Phys. 115, 19 (2017)

    Article  Google Scholar 

  5. F Tran, J Stelzl and P Blaha, J. Chem. Phys. 144, 204120 (2016)

    Article  ADS  Google Scholar 

  6. A D Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  7. C Adamo and V Barone, J. Chem. Phys. 110, 6158 (1999)

    Article  ADS  Google Scholar 

  8. P Blaha, K Schwarz, F Tran, R Laskowski, G K H Madsen and L D Marks, J. Chem. Phys. 152, 074101 (2020)

    Article  ADS  Google Scholar 

  9. J P Perdew and Y Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  10. J P Perdew,J A Chevary, S H Vosko, K A Jackson, M R Pederson, D J Singh and C Fiolhais, Phys. Rev. B 46, 6671 (1992)

  11. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  12. Z Wu and R E Cohen, Phys. Rev. B 73, 235116 (2006)

    Article  ADS  Google Scholar 

  13. J P Perdew, A Ruzsinszky, G I Csonka, O Vydrov, G E Scuseria, L.A.Constantin, X Zhou and K Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  14. J Sun, A Ruzsinszky and J P Perdew, Phys. Rev. Lett. 115, 036402 (2015)

    Article  ADS  Google Scholar 

  15. F Karsai, F Tran and P Blaha, Comput. Phys. Commun. 220, 230 (2017)

    Article  ADS  Google Scholar 

  16. F D Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  Google Scholar 

  17. F Tran and P Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  18. D Koller, F Tran and P Blaha, Phys. Rev. B 85, 155109 (2012)

    Article  ADS  Google Scholar 

  19. I Vurgaftman and J R Meyer, J. Appl. Phys. 94, 3675 (2003)

    Article  ADS  Google Scholar 

  20. F Tran and P Blaha, J. Phys. Chem. A 121, 3318 (2017 )

    Article  Google Scholar 

  21. Y Zhang, D A Kitchaev, J Yang, T Chen, S T Decke, R A S Parez, M A L Marques, H Peng, G Ceder and J P Perdew, J. Sun npj Comp. Mat. 4, 9 (2018)

    Article  Google Scholar 

  22. L Tairi, S Touam, A Boumaza, M Boukhtouta, H Meradji, S Ghemid, S Bin Omran, F El Haj Hassan and R Khenata, Phase Trans. 90, 1 (2017)

    Google Scholar 

  23. P Gopal, M Fornari, S Curtarolo, L A Agapito, L S I Liyanage and M B Nardelli, Phys. Rev. B 91, 245202 (2015)

    Article  ADS  Google Scholar 

  24. K Choudhary, Q Zhang, A C E Reid, S Chowdhary, N V Nguyan, Z Trautt, M W Newrock, F X Congo and F Tavazza, Sci. Data Article No. 05 (2018)

  25. G X Zhang, A M Reilly, A Tkatchenko and M Scheffler, New. J. Phys. 20, 063020 (2018)

    Article  ADS  Google Scholar 

  26. C M O Bastos, F P Sabino, G M Sipehi and L F Da Silva, J. Appl. Phys. 123, 065702 (2018)

    Article  ADS  Google Scholar 

  27. L A Agapito, S Curtarolo and M Buongiorno Nardelli, Phys. Rev. X 5, 011006 (2015)

    Google Scholar 

  28. F Tran and P Blaha, J. Phys. Chem. A 121, 3318 (2017)

    Article  Google Scholar 

  29. D Deguchi, K Sato, H Kino and T Kotani, Jpn. J. Appl. Phys. 55, 051201(2016)

    Article  ADS  Google Scholar 

  30. F Tran, S Ehsan and P Blaha, Phys. Rev. Mater. 2, 023802 (2018)

    Article  Google Scholar 

  31. J M Crowley, J Tahir Kheli and W A Goddard, J. Phys. Chem. Lett. 7, 1198 (2016)

    Article  Google Scholar 

  32. P Hass, F Tran and P Blaha, Phys. Rev. B 79, 085104 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The scientists who have generated the wien2k code are gratefully acknowledged for generating highly useful facility for computational material science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharamvir Singh Ahlawat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Ahlawat, D.S. & Singh, D. DFT estimation of structural parameters and band gaps of III–V (GaP, AlP, InP, BP) and II–VI (BeX, MgX, CdX: X\(=\)O, S, Se, Te) semiconductors. Pramana - J Phys 97, 103 (2023). https://doi.org/10.1007/s12043-023-02577-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02577-2

Keywords

PACS Nos

Navigation