Skip to main content
Log in

Optical soliton solutions and dynamical behaviours of Kudryashov’s equation employing efficient integrating approach

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This research studies the Kudryashov’s equation by using the generalised exponential rational function (GERF) technique. This technique allows us to use the traveling wave reduction for Kudryashov’s equation which provides the system of equations associated with the real and imaginary parts of the profile pulse for a complex function. First and foremost, we reduced these systems of equations into nonlinear ordinary differential equations (ODE) under the travelling wave transformations. The critical steps of the GERF technique are then applied to the resulting nonlinear ODE. With the assistance of the mentioned technique, we obtained different kinds of families of optical soliton solutions for Kudryashov’s equation. The real part, imaginary part and modulus of some of the obtained solutions are investigated/explored by the three-dimensional visual representations under the appropriate choice of the involved arbitrary parameters with suitable range space, demonstrating that the solutions represent a series of solitons, bright solitons, dark solitons, singular solitons, the interaction of solitons with solitary wave profiles, the interaction of kink waves with solitons and the interaction of kink waves with solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A Ja’afar and M Jawad, Stud. Math. Sci. 5(2), 13 (2012)

    Google Scholar 

  2. Sirendaoreji, Nonlinear Dyn. 89, 333 (2017)

    Article  Google Scholar 

  3. E M E Zayed and K A E Alurrfi, Optik 127(20), 9131 (2016)

    Article  ADS  Google Scholar 

  4. M Niwas, S Kumar and H Kharbanda, J. Ocean Eng. Sci. (2021), https://doi.org/10.1016/j.joes.2021.08.002

  5. S Kumar, K S Nasar and A Kumar, Results Phys. 28(5), 104621 (2021)

    Article  Google Scholar 

  6. Z Pinar, H Rezazadeh and M Eslami, Opt.Quantum Electron. 52, 504 (2020)

    Article  Google Scholar 

  7. M Ekici, A Sonmezoglu, Q Zhou, S P Moshokoa, M Z Ullah, A H Arnous and M Belic, Opt. Quantum Electron. 50(2), 75 (2018)

    Article  Google Scholar 

  8. F Ali, E Mehmet and S Abdullah, The Sci. World J. 2014, 534063 (2014)

    Google Scholar 

  9. M Foroutan, J Manafian and A Ranjbaran, Optik 162, 86 (2018)

    Article  ADS  Google Scholar 

  10. M Foroutan, J Manafian and I Zamanpour, Optik 164, 371 (2018)

    Article  ADS  Google Scholar 

  11. J G Liu and W H Zhu, Comput. Math. Appl. 78, 848 (2019)

    Article  MathSciNet  Google Scholar 

  12. J G Liu, W H Zhu and Y He, Z. Angew. Math. Phys. 72, 154 (2021)

    Google Scholar 

  13. J G Liu and W H Zhu, Nonlinear Dyn. 103, 1841 (2021)

    Article  Google Scholar 

  14. N A Kudryashov, Optik 189, 42 (2019)

    Article  ADS  Google Scholar 

  15. A Biswas, J V Guzman, M Ekici, Q Zhou, H Triki, A S Alshomrani and M R Belic, Optik 202, 163417 (2020)

    Article  ADS  Google Scholar 

  16. A Biswas, A Sonmezoglu, M Ekici, A S Alshomrani and M R Belic, Optik 199, 163338 (2019)

    Article  ADS  Google Scholar 

  17. A Biswas, M Ekici, A Sonmezoglu, A S Alshomrani and M R Beli, Optik 202, 163290 (2020)

    Article  ADS  Google Scholar 

  18. S Kumar, S Malik, A Biswas, Q Zhou, L Moraru, A K Alzahrani and M R Belic, Phys. Wave Phenom. 28(3), 299 (2020)

    Article  ADS  Google Scholar 

  19. K K Ali, A Zabihi, H Rezazadeh, R Ansari and M Inc, Opt. Quantum Electron. 53, 362 (2021)

    Article  Google Scholar 

  20. B Ghanbari and M A Inc, Eur. Phys. J. Plus 133, 142 (2018).

    Article  Google Scholar 

  21. B Ghanbari, H Günerhan and S Momani, Phys. Scr. 95, 105208 (2020)

    Article  ADS  Google Scholar 

  22. S Kumar, M Niwas and N Mann, Partial Diff. Equ. Appl. Math. 4, 100200 (2021)

    Google Scholar 

  23. S Kumar, M Niwas and S K Dhiman, J. Ocean Eng. Sci. (2021), https://doi.org/10.1016/j.joes.2021.10.009

    Article  Google Scholar 

  24. S Kumar, A Kumar and A M Wazwaz, The Eur. Phys. J. Plus 135, 870 (2020)

    Article  Google Scholar 

  25. S Kumar, H Almusawa, I Hamid, M A Akbar and M A Abdou, Results Phys. 30(4), 104866 (2021)

    Article  Google Scholar 

  26. S Kumar, H Almusawa, I Hamid and M A Abdou, Results Phys. 26(1), 104453 (2021)

    Article  Google Scholar 

  27. S Kumar, Pramana – J. Phys. 95(4), 161 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Sachin Kumar, the first author, is extremely thankful to SERB-DST, Government of India, for financial support for this work under the Matrics Scheme MTR/2020/000531.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Niwas, M. Optical soliton solutions and dynamical behaviours of Kudryashov’s equation employing efficient integrating approach. Pramana - J Phys 97, 98 (2023). https://doi.org/10.1007/s12043-023-02575-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02575-4

Keywords

PACS Nos

Navigation