Skip to main content
Log in

Complex bursting oscillations induced by pulse-shaped explosion and integer frequency ratios in a Rayleigh–van der Pol system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The pulse-shaped explosion (abbreviated as PSE) behavior, represented as the system roots pulse-shaped quantitative changing sharply, is a new way to the bursting oscillations proposed recently. In the present paper, the complex bursting oscillation patterns triggered by the PSE and integer frequency ratios are considered based on a Rayleigh–van der Pol system (abbreviated as RVDPS) excited by the parametrical and external forces. Two cascade bursting oscillations, the cascade supHopf/supHopf bursting oscillations induced by the integer frequency ratios and the cascade supHopf/supHopf bursting oscillations with multiple PSE/PSE hysteresis loops induced by the integer frequency ratios and PSEs, are investigated. We show that the PSEs occur when the system solution curve approaches to infinity at some certain values and the PSEs do not change the stabilities of the attractors. In addition, we find that the frequency and period of the cascade bursting oscillation patterns equal to that of the external force. Our study proposes a new PSE type to the bursting oscillations named the cascade PSEs and increases two cascade bursting oscillation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. H T Hua, H G Gu, Y B Jia and B Lu, Commun. Nonlinear Sci. 110, 106370 (2022)

    Article  Google Scholar 

  2. H Taher, D Avitabile and M Descroches, Nonlinear Dynam. 108, 4261 (2022)

    Article  Google Scholar 

  3. Y H Qian and Y N Chen, Eur. Phys. J. Plus. 137, 588 (2022)

    Article  Google Scholar 

  4. X D Ma, W A Jiang, X F Zhang, X J Han and Q S Bi, Phys. Scripta. 96, 015213 (2021)

    Article  ADS  Google Scholar 

  5. N Inaba, T Kousaka, T Tsubone, H Okazaki and H Ito, Chaos. 31, 073133 (2021)

    Article  ADS  Google Scholar 

  6. G D Leutcho, J Kengne, L K Kengne, A Akgul, V T Pham and S Jafari, Phys. Scripta 95, 075216 (2020)

    Article  ADS  Google Scholar 

  7. R T Siewe, U S Domguia and P Woafo, Commun. Nonlinear Sci. 69, 343 (2019)

    Article  Google Scholar 

  8. S H Zhang, C Wang, H L Zhang, P Ma and X K Li, Chaos Solitons Fractals 156, 111809 (2022)

    Article  Google Scholar 

  9. M Sekikawa, T Kousaka, T Tsubone, N Inaba and H O Kazaki, Physica D. 433, 133178 (2022)

    Article  Google Scholar 

  10. Y Patsios, R Huzak, P De Maesschalck and N Popovic, J. Math. Anal. Appl. 505, 125641 (2022)

    Article  Google Scholar 

  11. C Zhang, X D Ma and Q S Bi, Chaos Solitons Fractals 160, 112184 (2022)

    Article  Google Scholar 

  12. M P Asir, D Premraj and K Sathiyadevi, Eur. Phys. J. Plus 137, 282 (2022)

    Article  Google Scholar 

  13. J Rinzel, Bursting oscillations in an excitable membrane model (Springer, Berlin, 1985)

    Book  MATH  Google Scholar 

  14. E M Izhikevich, Int. J. Bifurc. Chaos 10, 1171 (2000)

    Article  MathSciNet  Google Scholar 

  15. M G Pedersen, M Brons and M P Sorensen, Chaos 32, 013121 (2022)

    Article  ADS  Google Scholar 

  16. X D Ma, D X Xia, W N Jiang, M Liu and Q S Bi, Chaos Solitons Fractals 147, 110967 (2021)

    Article  Google Scholar 

  17. Y T Zhang, Q J Cao and W H Huang, Mech. Syst. Signal Pr. 161, 107916 (2021)

    Article  Google Scholar 

  18. Z Trzaska, Nonlinear Dynam. 100, 2635 (2020)

    Article  Google Scholar 

  19. A Mondal, S K Sharma, R K Upadhyay and A Mondal, Sci. Rep. 9, 15721 (2019)

    Article  ADS  Google Scholar 

  20. B C Bao, Q F Yang, L Zhu, H Bao, Q Xu, Y J Yu and M Chen, Int. J. Bifurc. Chaos 29, 1950134 (2019)

    Article  Google Scholar 

  21. S D Vijay and S L Kingston and K Thamilmaran, AEU – Int. J. Electron. C. 111, 152898 (2019)

    Article  Google Scholar 

  22. C Y Zhou, Z J Li, F Xie, M L Ma and Y Zhang, Nonlinear Dynam. 97, 2799 (2019)

    Article  Google Scholar 

  23. Y Yu, Z D Zhang and X J Han, Commun. Nonlinear Sci. 56, 380 (2018)

    Article  Google Scholar 

  24. K S Oyeleke, O I Olusola, O T Kolebaje, U E Vincent, A B Adeloye and P V E McClintock, Phys. Scripta 97, 085211 (2022)

    Article  ADS  Google Scholar 

  25. M Desroches, A Guillamon, E Ponce, R Prohens, S Rodrigues and A E Teruel, SIAM Rev. 58, 653 (2016)

    Article  MathSciNet  Google Scholar 

  26. X J Han, Q S Bi, J Kurths, S Rodrigues and A E Teruel, Phys. Rev. E. 98, 010201 (2018)

    Article  ADS  Google Scholar 

  27. X D Ma, X J Han, W A Jiang and Q S Bi, Pramana – J. Phys. 94, 159 (2020)

  28. X Y Zhang, L M Chen, F Zhao, X K Cui and S Q Wang, Eur. Phys. J. Plus 137, 627 (2022)

    Article  Google Scholar 

  29. X D Ma, J Song, W K Wei, X J Han and Q S Bi, Int. J. Bifurc. Chaos 31, 2150082 (2021)

    Article  Google Scholar 

  30. X D Ma, W A Jiang and Y Yu, Commun. Nonlinear Sci. 103, 105959 (2021)

    Article  Google Scholar 

  31. G D Yang, W Xu, J Q Feng and X D Gu, Nonlinear Dynam. 82, 1797 (2015)

    Article  MathSciNet  Google Scholar 

  32. S Erlicher, A Trovate and P Argoul P, Mech. Syst. Signal Pr. 41, 485 (2013)

  33. M J Wang, J H Li, X A Zhang, H H C Lu, T Fernando, Z J Li and Y C Zeng, Nonlinear Dynam. 105, 3699 (2021)

    Article  Google Scholar 

  34. M Desroches, T J Kaper and M Krupa, Chaos 23, 046106 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. E A Viktorov et al., Phys. Rev. E. 94, 052208 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Grant No. 11872188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangyao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Ma, X. & Bi, Q. Complex bursting oscillations induced by pulse-shaped explosion and integer frequency ratios in a Rayleigh–van der Pol system. Pramana - J Phys 97, 114 (2023). https://doi.org/10.1007/s12043-023-02566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02566-5

Keywords

PACS

Navigation