Skip to main content
Log in

Fragmentation analysis of various compound nuclei formed in the mass region 200 and the associated entrance channel effects

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The dynamical cluster-decay model (DCM) is employed to analyse the decay of various compound nuclei (CNs) having mass A\(_{\textrm{CN}}\approx \) 200 such as \(^{194}\)Hg\(^*\), \(^{197}\)Tl\(^*\), \(^{202}\)Pb\(^*\) and \(^{210}\)Rn\(^*\), formed in \(^{16}\)O-induced reactions, at common excitation energy \(E_{\textrm{CN}}^*\sim \) 45 MeV. Calculations are made for three decay fragment configurations, i.e., spherical, \(\beta _2\)-deformed ‘hot-compact’ and \(\beta _2\)-deformed ‘cold-elongated’ to study the effect of deformation and orientation in the decay dynamics. The structure of fragmentation potential and preformation probability of the chosen nuclei get the significantly modified after the inclusion of deformation and orientation effects, besides showing a dependence on the mass of CN. Further, an investigation is carried out to see the effect of entrance channel properties on the decay dynamics. For this, three reactions, such as \(^{12}\)C \( + ^{182}\)W, \(^{16}\)O \(+ ^{178}\)Hf and \(^{40}\)Ar \(+ ^{154}\)Sm are considered which form the \(^{194}\)Hg\(^*\) CN at common \(E_{\textrm{CN}}^*\sim \) 57 MeV. The barrier characteristics, fragmentation structure, preformation probability, barrier penetrability, evaporation residue and fission cross-sections are calculated to analyse the role of the entrance channel in the subsequent decay dynamics. The calculated neutron evaporation residue and fission cross-sections agree well with the experimental data. The most probable fission fragments are identified for the compound nuclei, and the corresponding experimental validation is called for. Moreover, Bohr’s independent hypothesis is tested in view of the survival probability (\(P_{\textrm{surv}}\)) of the chosen reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A Shamlath et al, Phys. Rev. C 95, 034610 (2017)

    Article  ADS  Google Scholar 

  2. A Shamlath et al, Nucl. Phys. A 945, 67 (2016)

    Article  ADS  Google Scholar 

  3. A C Berriman, D J Hinde, M Dasgupta, C R Morton, R D Butt and J O Newton, Nature (London) 413, 144 (2001)

    Article  ADS  Google Scholar 

  4. J Gehlot et al, Phys. Rev. C 99, 034615 (2019)

    Article  ADS  Google Scholar 

  5. D J Hinde, R du Rietz and M Dasgupta, Eur. Phys. J. Web Conf. 17, 04001 (2011)

    Article  Google Scholar 

  6. D J Hinde, R G Thomas, R du Rietz, A Diaz-Torres, M Dasgupta, M L Brown, M Evers, L R Gasques, R Rafiei and M D Rodriguez, Phys. Rev. Lett. 100, 202701 (2008)

    Article  ADS  Google Scholar 

  7. G Wallerstein et al, Rev. Mod. Phys. 69, 995 (1997)

    Article  ADS  Google Scholar 

  8. C L Jiang et al, Phys. Rev. C 71, 044613 (2005)

    Article  ADS  Google Scholar 

  9. A M Stefanini et al, Phys. Rev. C 78, 044607 (2008)

    Article  ADS  Google Scholar 

  10. D Kumar and M Maiti, Phys. Rev. C 95, 064602 (2017)

    Article  ADS  Google Scholar 

  11. R Prajapat and M Maiti, Phys. Rev. C 101, 024608 (2020)

    Article  ADS  Google Scholar 

  12. A Chauhan et al, Phys. Rev. C 102, 064606 (2020)

    Article  ADS  Google Scholar 

  13. G Sarkar, N Grover, M K Sharma and M Maiti, Nucl. Phys. A 1015, 122305 (2021)

    Article  Google Scholar 

  14. N Bohr et al, Nature (London) 137, 344 (1936)

    Article  ADS  Google Scholar 

  15. T Banerjee, S Nath and S Pal, Phys. Rev. C 91, 034619 (2015)

    Article  ADS  Google Scholar 

  16. O Hahn and F Strassmann, Naturwissenschaften 27, 11 (1939)

    Article  ADS  Google Scholar 

  17. N V Antonenko, E A Cherepanov, A K Nasirov, V P Permjakov and V V Volkov, Phys. Lett. B 319, 425 (1993); Phys. Rev. C 51, 2635 (1995)

  18. G G Adamian, N V Antonenko, W Scheid and V V Volkov, Nucl. Phys. A 627, 361 (1997)

    Article  ADS  Google Scholar 

  19. G G Adamian, N V Antonenko, W Scheid and V V Volkov, Nucl. Phys. A 633, 409 (1998)

    Article  ADS  Google Scholar 

  20. G Giardina, S Hofmann, A I Muminov and A K Nasirov, Eur. Phys. J. A 8, 205 (2000)

    Article  ADS  Google Scholar 

  21. V I Zagrebaev, Y Aritomo, M G Itkis, Yu Ts Oganessian and M Ohta, Phys. Rev. C 65, 014607 (2001)

    Article  ADS  Google Scholar 

  22. D J Hinde, N Rowley, M Dasgupta, R D Butt, C R Morton and A Mukherjee, Phys. Rev. C 68, 044606 (2003)

    Article  ADS  Google Scholar 

  23. P Jisha et al, Phys. Rev. C 101, 024611 (2020)

    Article  ADS  Google Scholar 

  24. R Lemmon, J R Leigh, J X Wei, C R Morton, D J Hinde, J O Newton, J C Mein and M Dasgupta, Phys. Lett. B 316, 32 (1993)

    Article  ADS  Google Scholar 

  25. E Prasad et al, Phys. Rev. C 84, 064606 (2011)

    Article  ADS  Google Scholar 

  26. M Rajagopalan, D Logan, J W Ball, M Kaplan, H Delagrange, M F Rivet, J M Alexander, L C Vaz and M S Zisman, Phys. Rev. C 25, 5 (1982)

    Article  Google Scholar 

  27. R G Stokstad, W Reisdorf, K D Hildenbrand, J V Kratz, G Wirth, R Lucas and J Poitou, Z. Phys. A 295, 269 (1980)

  28. R K Gupta, M Balasubramaniam, R Kumar, D Singh, C Beck and W Greiner, Phys. Rev. C 71, 014601 (2005)

    Article  ADS  Google Scholar 

  29. B B Singh, M K Sharma, R K Gupta and W Greiner, Int. J. Mod. Phys. E 15, 699 (2006)

    Article  ADS  Google Scholar 

  30. B B Singh, M K Sharma and R K Gupta, Phys. Rev. C 77, 054613 (2008)

    Article  ADS  Google Scholar 

  31. S Kanwar, M K Sharma, B B Singh, R K Gupta and W Greiner, Int. J. Mod. Phys. E 18, 1453 (2009)

    Article  ADS  Google Scholar 

  32. M K Sharma, S Kanwar, G Sawhney, R K Gupta and W Greiner, J. Phys. G: Nucl. Part. Phys. 38, 055104 (2011)

    Article  ADS  Google Scholar 

  33. A Kaur, S Chopra and R K Gupta, Phys. Rev. C 90, 024619 (2014)

    Article  ADS  Google Scholar 

  34. S Chopra, A Kaur and R K Gupta, Phys. Rev. C 91, 034613 (2015)

    Article  ADS  Google Scholar 

  35. K Sandhu, M K Sharma and R K Gupta, Phys. Rev. C 86, 064611 (2012)

    Article  ADS  Google Scholar 

  36. M Kaur, M K Sharma and R K Gupta, Phys. Rev. C 86, 064610 (2012)

    Article  ADS  Google Scholar 

  37. S K Arun, R K Gupta, B B Singh, S Kanwar and M K Sharma, Phys. Rev. C 79, 064616 (2009)

    Article  ADS  Google Scholar 

  38. R K Gupta, M Balasubramaniam, R Kumar, N Singh, M Manhas and W Greiner, J. Phys. G: Nucl. Part. Phys. 31, 631 (2005)

    Article  ADS  Google Scholar 

  39. R K Gupta, W Scheid and W Greiner, Phys. Rev. Lett. 35, 353 (1975)

    Article  ADS  Google Scholar 

  40. R K Gupta, M K Sharma, S Singh, R Nouicer and C Beck, Phys. Rev. C 56, 3242 (1997)

    Article  ADS  Google Scholar 

  41. V M Strutinsky et al, Nucl. Phys. A 95, 420 (1967); Nucl. Phys. A 122, 1 (1968)

  42. N J Davidson, S S Hsiao, J Markram, H G Miller and Y Tzeng, Nucl. Phys. A 570, 61c (1994)

    Article  ADS  Google Scholar 

  43. G Audi, A H Wapstra and C Thiboult, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  44. A Sandulescu et al, Phys. Lett. B 60, 225 (1976)

    Article  ADS  Google Scholar 

  45. R K Gupta, A Sandulescu and W Greiner, Phys. Lett. B 67, 257 (1977)

    Article  ADS  Google Scholar 

  46. R K Gupta et al, Z. Phys. A 283, 217 (1977)

    Article  ADS  Google Scholar 

  47. R K Gupta, A Sandulescu and W Greiner, Z. Natureforsch. 32a, 704 (1977)

  48. R K Gupta, M Manhas and W Greiner, Phys. Rev. C 73, 054307 (2006)

    Article  ADS  Google Scholar 

  49. H Kröger and W Scheid, J. Phys. G 6, L85 (1980)

    Article  ADS  Google Scholar 

  50. G Royer and J Mignen, J. Phys. G: Nucl. Part. Phys. 18, 1781 (1992)

    Article  ADS  Google Scholar 

  51. K J Le Couteur and D W Lang, Nucl. Phys. 13, 32 (1959)

    Article  Google Scholar 

  52. R Kaur, M Kaur, V Singh, M Kaur, B B Singh and B S Sandhu, Phys. Rev. C 101, 044605 (2020)

    Article  ADS  Google Scholar 

  53. S Jain, R Kumar, S K Patra and M K Sharma, Phys. Rev. C 105, 034605 (2022)

    Article  ADS  Google Scholar 

  54. A Kaur and M K Sharma, Phys. Rev. C 99, 044611 (2019)

    Article  ADS  Google Scholar 

  55. M Kaur and M K Sharma, Phys. Rev. C 85, 054605 (2012)

    Article  ADS  Google Scholar 

  56. A V Andreev, G G Adamian, N V Antonenko and A N Andreyev, Phys. Rev. C 88, 047604 (2013)

    Article  ADS  Google Scholar 

  57. A N Andreyev et al, Phys. Rev. Lett. 105, 252502 (2010)

    Article  ADS  Google Scholar 

  58. M Warda, A Staszczak and W Nazarewicz, Phys. Rev. C 86, 024601 (2012)

    Article  ADS  Google Scholar 

  59. P M\(\ddot{\rm o}\)ller, J Randrup and A J Sierk, Phys. Rev. C 85, 024306 (2012)

Download references

Acknowledgements

All the authors are highly thankful to late Prof. Raj K Gupta for his keen interest and involvement in developing the DCM methodology. Research Grant No. INT/RUS/RFBR/387 from DST(IN) and a student research fellowship from the MHRD, Government of India, are acknowledged by MM and GS, respectively. MKS is thankful to the Department of Science and Technology, New Delhi, India, for the research project (File No. CRG/2021/001144). AK acknowledges the financial support from the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund, the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Maiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, G., Kaur, A., Maiti, M. et al. Fragmentation analysis of various compound nuclei formed in the mass region 200 and the associated entrance channel effects. Pramana - J Phys 97, 74 (2023). https://doi.org/10.1007/s12043-023-02540-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02540-1

Keywords

PACS Nos

Navigation