Skip to main content
Log in

Multi-party quantum key agreement with parameter-independent channels

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A novel multi-party quantum key agreement protocol, where the channels are independent of parameters is proposed in this paper. The proposed multi-party quantum key agreement (MQKA) protocol utilises the non-maximally entangled Bell states with unknown parameters as quantum resources and performs the unitary operation to encode key information. In the parameters-independent channels, each party does not need to know the parameters of the channels being operated on. Compared with the previous MQKA protocols that are designed based on maximally entangled states, our protocol can work without knowing the parameters of the non-maximally entangled states which is convenient for experiments. Furthermore, security analysis shows that the proposed protocol can resist outsider and participant attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C H Bennett and G Brassard, Proc. IEEE International Conference on Computers, Systems, and Signal Processing (1984) pp. 175–179

  2. A E Allati, M E Baz and Y Hassouni, Quantum Inf. Process. 10, 589 (2011)

    Article  MathSciNet  Google Scholar 

  3. H K Lo and H F Chau, Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  4. A K Maurya, M K Mishra and H Prakash, Pramana – J. Phys. 86, 515 (2016)

    Article  ADS  Google Scholar 

  5. M Hillery, V Bužek and A Berthiaume, Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. A Karlsson, M Koashi and N Imoto, Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  7. L Xiao, G L Long, F G Deng and J W Pan, Phys. Rev. A 69, 521 (2004)

    Article  Google Scholar 

  8. Z Sun and D Long, Int. J. Theor. Phys. 52, 212 (2013)

    Article  Google Scholar 

  9. H Cao, W Ma, L Lü, Y He and G Liu, Quantum Inf. Process. 18, 287 (2019)

    Article  ADS  Google Scholar 

  10. N Zhou, G Zeng and J Xiong, Electron. Lett. 40, 1149 (2004)

  11. S K Chong and T Hwang, Opt. Commun. 283, 1192 (2010)

    Article  ADS  Google Scholar 

  12. C W Tsai and T Hwang, Technical report, C-S-I-E, NCKU, Taiwan R.O.C. (2009)

  13. C C Hsueh and C Y Chen, Proceedings of the 14th Information Security Conference (2004) pp. 236–242

  14. S K Chong, C W Tsai and T Hwang, Int. J. Theor. Phys. 50, 1793 (2011)

    Article  Google Scholar 

  15. B Liu, F Gao, W Huang and Q Y Wen, Quantum Inf. Process. 12, 1797 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. X R Yin, W P Ma and W Y Liu, Int. J. Theor. Phys. 52, 3915 (2013)

    Article  Google Scholar 

  17. C Shukla, N Alam and A Pathak, Quantum Inf. Process. 13, 2391 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. H N Liu, X Q Liang, D H Jiang, Y H Zhang and G B Xu, Int. J. Theor. Phys. 58, 1659 (2019)

    Article  Google Scholar 

  19. S Lin, X Zhang, G D Guo, L L Wang and X F Liu, Phys. Rev. A 104, 042421 (2021)

    Article  ADS  Google Scholar 

  20. C H Bennett, G Brassard, S Popescu, B Schumacher, J A Smolin and W K Wootters, Phys. Rev. A 76, 722 (1996)

    ADS  Google Scholar 

  21. K Berndl and S Teufel, Phys. Rev. A 224, 314 (1997)

    Google Scholar 

  22. N Gisin, Phys. Rev. A 210, 151 (1996)

    Google Scholar 

  23. D Das and R Sengupta, Pramana J. Phys. 88, 82 (2017)

  24. K Wang, X T Yu and Z C Zhang, Proc. Comput. Sci. 131, 1202 (2018)

    Article  Google Scholar 

  25. Y B Zhan and Y W Wang, Commun. Theor. Phys. 48, 449 (2007)

    Article  ADS  Google Scholar 

  26. T Li and M Jiang, IEEE Int. Conf. Netw. Sens. Control (2020) pp. 1–5

  27. T Li, X Wang and M Jiang, Int. J. Theor. Phys. 60, 2429 (2021)

    Article  Google Scholar 

  28. H N Liu, X Q Liang, D H Jiang, G B Xu and W M Zheng, Quantum Inf. Process. 18, 242 (2019)

    Article  Google Scholar 

  29. J Gu and T Hwang, Int. J. Theor. Phys. 60, 331 (2021)

    Article  ADS  Google Scholar 

  30. F G Deng, X H Li, H Y Zhou and Z J Zhang, Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  31. X H Li, F G Deng and H Y Zhou, Phys. Rev. A 74, 361 (2006)

    Google Scholar 

  32. R G Zhou, X Zhang and F Li, Quantum Inf. Process. 20, 153 (2021)

    Article  ADS  Google Scholar 

  33. R Ionicioiu and D Terno, Phys. Rev. Lett. 107, 230406 (2011)

    Article  ADS  Google Scholar 

  34. P Zawadzki, Quantum Inf. Process. 18, 7 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. A Cabello, Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project is supported by the Tang Scholar Project of Soochow University, the National Natural Science Foundation of China, under Grant 61873162, Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network and Suzhou Key Laboratory of Advanced Optical Communication Network Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Jiang, M. Multi-party quantum key agreement with parameter-independent channels. Pramana - J Phys 97, 65 (2023). https://doi.org/10.1007/s12043-023-02538-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02538-9

Keywords

PACS Nos

Navigation