Skip to main content
Log in

Magnetocaloric effect, magnetic susceptibility, heat capacity and optical properties of wedge-shaped quantum dots

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, a GaAs wedge-shaped quantum dot (WSQD) is considered. In the first step, we theoretically investigated the magnetocaloric effect, magnetic susceptibility and heat capacity of WSQD without considering impurity. In the next step, we calculated the binding energy and optical properties of the WSQD under various factors, such as impurity position, temperature and pressure. For our results, we first solved the Schrödinger equation to determine the energy levels and eigenstates of the system. Then, the influence of impurity position, temperature and pressure on optical absorption coefficients (ACs) and refractive index changes (RICs) were investigated. The temperature dependence of the magnetic entropy changes (magnetocaloric effect) shows a pronounced minimum at low temperatures. The magnetic susceptibility shows both positive (paramagnetism) and negative values (diamagnetism) for different parameters. The impurity position has a key role in the electronic properties, ACs and RIs of a WSQD. The ACs and RICs enhance and shift towards lower energies under pressure. Also, the optical properties reduce in the presence of impurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S Bandyopadhyay, Physics of nanostructured solid state devices (Springer, Boston, MA, 2012)

    Book  Google Scholar 

  2. D Awschalom, D Loss and N Samarth, Semiconductor spintronics and quantum computation (Springer, Berlin, Heidelberg, 2002)

    Book  Google Scholar 

  3. I Zutic, J Fabian and S Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

  4. G A Prinz, Science 282, 1660 (1998)

    Article  Google Scholar 

  5. M A Reed, Science 268, 118 (1993)

    Google Scholar 

  6. S Ünlü, I Karabulut and H Safak, Physica E 33, 319 (2006)

    Article  ADS  Google Scholar 

  7. N Kirstaedter, O G Schmidt, N N Ledentsov, D Bimberg, V M Ustinov, A Yu Egorov and A E Zhukov, Appl. Phys. Lett. 69, 1226 (1996)

    Article  ADS  Google Scholar 

  8. R Khordad, Int. J. Mod. Phys. B 31, 1750055 (2017)

    Article  ADS  Google Scholar 

  9. A Sayari, M Servatkhah and R Pourmand, Physica B 628, 413631 (2022)

    Article  Google Scholar 

  10. S A-B Nasrallah, N Sfina and M Said, Eur. Phys. J. B 47, 167 (2005)

    Article  ADS  Google Scholar 

  11. J A R Esqueda, C I Mendoza, M del C Mussot and G J Vazquez, Physica E 28, 365 (2005)

  12. R Khordad, C O Edet and A N Ikot, Int. J. Mod. Phys. C 33, 2250106 (2022)

    Article  ADS  Google Scholar 

  13. F Durante, P Alves, G Karunasiri, N Hanson, M Byloos, H C Liu, A Bezinger and M Buchanan, Infrared Phys. Technol. 50, 18 (2007)

    Google Scholar 

  14. W Xiao and J L Xiao, Pramana – J. Phys. 81, 865 (2013)

    Article  ADS  Google Scholar 

  15. H R Rastegar Sedehi, J. Low Temp. Phys. 207, 241 (2022)

    Article  ADS  Google Scholar 

  16. R Khordad and B Mirhosseini, Pramana – J. Phys. 85, 723 (2015)

    Article  ADS  Google Scholar 

  17. M Khosravi, B Vaseghi, K Abbasi and G Rezaei, J. Supercond. Nov. Magn. 33, 761 (2020)

    Article  Google Scholar 

  18. M Elsaid, M Ali and A Shaer, Mod. Phys. Lett. B 33, 1950422 (2019)

    Article  ADS  Google Scholar 

  19. R Khordad and H Bahramiyan, Pramana – J. Phys. 88, 50 (2017)

  20. Z Zhao, X Li, Y Duan, C Chang and L Zhang, Opt. Quant. Electron. 54, 564 (2022)

    Article  Google Scholar 

  21. H Bahramiyan, Opt. Mater. 75, 187 (2018)

    Article  ADS  Google Scholar 

  22. E C Niculescu, Superlatt. Microstruct. 82, 313 (2015)

    Article  ADS  Google Scholar 

  23. R Khordad and B Vaseghi, Chin. J. Phys. 59, 473 (2019)

    Article  Google Scholar 

  24. K L Jahan, A Boda, I V Shankar, Ch N Raju and A Chatterjee, Sci. Rep. 8, 5037 (2018)

    Article  Google Scholar 

  25. F Bzour, M K Elsaid and K F Ilaiwi, J. King Saud Univ. Sci. 30, 83 (2018)

    Article  Google Scholar 

  26. Y Sun and J L Xiao, Superlatt. Microstrut. 145, 106617 (2020)

    Article  Google Scholar 

  27. J L Xiao, Superlatt. Microstruct. 120, 459 (2018)

    Article  ADS  Google Scholar 

  28. M Servatkhah, Opt. Quant. Electron. 52, 126 (2020)

    Article  Google Scholar 

  29. J Li, B Wang and J Wang, Physica E 112, 109 (2019)

    Article  ADS  Google Scholar 

  30. M Servatkhah and R Pourmand, Eur. Phys. J. Plus 135, 754 (2020)

    Article  Google Scholar 

  31. R Khordad and H Bahramiyan, Int. J. Mod. Phys. B 28, 1450119 (2014)

    Article  ADS  Google Scholar 

  32. B Vaseghi, G Rezaei and M Malian, Opt. Commun. 287, 241 (2013)

    Article  ADS  Google Scholar 

  33. H Hassanabadi, H Rahimov, L Lu and C Wang, J. Lumin. 132, 1095 (2012)

    Article  Google Scholar 

  34. W Xie, J. Lumin. 131, 943 (2011)

    Article  Google Scholar 

  35. A M Tishin and Y I Spichkin, Magnetocaloric effect and its applications (Institute of Physics Publishing, Bristol, CRC Press, 2003)

    Book  Google Scholar 

  36. K A Gschneidner Jr, V K Pecharsky and A O Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  37. M Patra, S Majumdar, S Giri, G N Iles and T Chatterji, J. Appl. Phys 107, 076101 (2010)

    Article  ADS  Google Scholar 

  38. H R Rastegar Sedehi and R Khordad, Physica E 134, 114886 (2021)

    Article  Google Scholar 

  39. K A Gschneidner and V K Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000)

    Article  ADS  Google Scholar 

  40. V Franco, J S Blázquez, J J Ipus, J Y Law, L M Moreno-Ramírez and A Conde, Prog. Mater. Sci. 93, 112 (2018)

    Article  Google Scholar 

  41. Y Y Gong, D H Wang, Q Q Cao, E K Liu, J Liu and Y W Du, Adv. Mater 27, 801 (2014)

    Article  Google Scholar 

  42. B G Shen, J R Sun, F X Hu, H W Zhang and Z H Cheng, Adv. Mater. 21, 4545 (2009)

    Article  Google Scholar 

  43. N A de Oliveira and P J von Ranke, Phys. Rep. 489, 89 (2010)

    Article  ADS  Google Scholar 

  44. M S Reis, Phys. Lett. A 378, 918 (2014)

    Article  ADS  Google Scholar 

  45. A M Tishin, Handbook of magnetic materials edited by K H J Buschow (North Holland, Amsterdam, 1999)

    Google Scholar 

  46. E Warburg, Ann. Phys. 13, 141 (1881)

    Article  Google Scholar 

  47. Z Z Alisultanov, L S Paixao and M S Reis, Appl. Phys. Lett. 105, 232406 (2014)

    Article  ADS  Google Scholar 

  48. O A Negrete, F J Peña and P Vargas, Entropy 20, 888 (2018)

    Article  ADS  Google Scholar 

  49. D E Aspnes, Phys. Rev. B 14, 5331 (1976)

    Article  ADS  Google Scholar 

  50. B Welber, M Cardona, C K Kim and S Rodriquez, Phys. Rev. B 12, 5729 (1975)

    Article  ADS  Google Scholar 

  51. H Ehrenrich, J. Appl. Phys. 32, 2155 (1961)

    Article  ADS  Google Scholar 

  52. G A Samara, Phys. Rev. B 27, 3494 (1983)

    Article  ADS  Google Scholar 

  53. R F Kopf, M H Herman, M Lamont Schnoes, A P Perley, G Livescu and M Ohring, J. Appl. Phys. 71, 5004 (1992)

  54. R W Boyd, Nonlinear optics (Academic Press, New York, 2003)

    Google Scholar 

  55. S Unlu, I Karabulut and H Safak, Physica E 33, 319 (2006)

    Article  ADS  Google Scholar 

  56. D Ahn and S L Chuang, IEEE J. Quantum Elect. 23, 2196 (1987)

    Article  ADS  Google Scholar 

  57. K J Kuhn, G U Lyengar and S Yee, J. Appl. Phys. 70, 5010 (1991)

    Article  ADS  Google Scholar 

  58. W Xie, Physica B 403, 4319 (2008)

    Article  ADS  Google Scholar 

  59. P Hashemi, M Servatkhah and R Pourmand, Opt. Quant. Electron. 53, 567 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Servatkhah.

Appendix A

Appendix A

The single-particle states are given by

$$\begin{aligned} H_0\mathrm {\Psi }=E_0\mathrm {\Psi }, \end{aligned}$$
(A.1)

where \(\mathrm {\Psi }\) is the single-particle wave function and E is the energy eigenvalue. The Hamiltonian of eq. (A.1) in the cylindrical coordinates is given by

$$\begin{aligned} H_0{\Psi }\ {}= & {} -\frac{{\hslash }^2}{2m^*}\left[ \frac{1}{\rho }\frac{\partial }{\partial \rho }\left( \rho \frac{\partial }{\partial \rho }\ \right) +\frac{{\partial }^2}{\partial z^2}+\frac{1}{{\rho }^2}\frac{{\partial }^2}{\partial {\varphi }^2}\right] {\Psi }\ \nonumber \\{} & {} -\frac{i\hslash {\omega }_c}{2}\frac{\partial {\Psi }\ }{\partial \varphi }+\frac{m^*{{\omega }^2_c}{\rho }^2}{8}{\Psi }=(E_{\rho }+E_z){\Psi }.\nonumber \\ \end{aligned}$$
(A.2)

Let us present the wave function of the electron as

$$\begin{aligned} {\Psi } \left( \rho ,\varphi ,z\right) =f(\rho ,\varphi )h\left( z\right) . \end{aligned}$$
(A.3)

Inserting eq. (A.3 ) into eq. (A.2), separating variables in eq. (A.2), we shall obtain the following equations:

$$\begin{aligned}{} & {} -\frac{{\hslash }^2}{2m^*}\frac{\textrm{d}^2h\left( z\right) }{\textrm{d}z^2}=E_zh(z) \end{aligned}$$
(A.4)
$$\begin{aligned}{} & {} -\frac{{\hslash }^2}{2m^*}\left[ \frac{1}{\rho }\frac{\partial }{\partial \rho }\left( \rho \frac{\partial f}{\partial \rho }\ \right) +\frac{1}{{\rho }^2}\frac{{\partial }^2f}{\partial {\varphi }^2}\right] \nonumber \\{} & {} -\frac{i\hslash {\omega }_c}{2}\frac{\partial f\ }{\partial \varphi }+\frac{m^*{{\omega }_c}^2{\rho }^2}{8} f=E_{\rho }f. \end{aligned}$$
(A.5)

The solutions of eqs (A.4) and (A.5) appear as

$$\begin{aligned} f\left( \rho ,\varphi \right) =S\textrm{e}^{-\frac{{\rho }^2}{4a^2}}{\rho }^{\left| l\right| }F\left( -n,\left| l\right| +1;\frac{{\rho }^2}{2a^2}\right) \textrm{e}^{im\varphi } \end{aligned}$$
(A.6)

and

$$\begin{aligned} h\left( z\right) =C\,{\textrm{sin}\, \textrm{ K}}z+D\,{\textrm{cos} \,\textrm{ K}z,\ } \end{aligned}$$
(A.7)

where

$$\begin{aligned} {K}=\sqrt{\frac{2m^*E_z}{{\hslash }^2}}. \end{aligned}$$

Also, the parameters CD and S are constants. Now, by imposing the boundary conditions on eqs (A.6) and (A.7), we can obtain eqs (8)–(10) in the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayyari, A., Servatkhah, M. & Pourmand, R. Magnetocaloric effect, magnetic susceptibility, heat capacity and optical properties of wedge-shaped quantum dots. Pramana - J Phys 97, 75 (2023). https://doi.org/10.1007/s12043-023-02535-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02535-y

Keywords

PACS Nos

Navigation