Skip to main content
Log in

Delta excitation in the double magic nucleus \(^{56}\)Ni

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A system of baryons is studied where the system consists of the nucleon (N) and its first excited delta (\(\Delta \)). The present study investigates the double magic nucleus \(^{56}\)Ni under compression. To achieve the aim of this study, a technique called constrained spherical Hartree–Fock (CSHF) is employed. The effective potential of NN, N\(\Delta \) and \(\Delta \)\(\Delta \) is used. Examination of the sensitivity for results on the model space is studied. For a large model space, the compressibility of the nuclear system increases. By increasing the model space, the radial density distribution and the formation of \(\Delta \)s decrease. Then the nucleus becomes more bounded under compression by increasing the model space when delta resonances have occurred. The formation of \(\Delta \)s is an increment to 8.93% of all components of \(^{56}\)Ni nucleus. Under compression, a part of the increment in binding energy creates \(\Delta \) particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D Rudolph et al, Phys. Rev. Lett. 82, 3763 (1999)

    Article  ADS  Google Scholar 

  2. F Alejandro and B Altschul, Phys. Rev. D 82, 123002 (2010)

    Article  ADS  Google Scholar 

  3. U Mosel and V Metag, Nucl. Phys. News 3, 25 (1993)

    Article  ADS  Google Scholar 

  4. L Xiong, Z G Wu, C M Ko and J Q Wu, Nucl. Phys. A 512, 772 (1990)

    Article  ADS  Google Scholar 

  5. M Hoffmann et al, Phys. Rev. C 51, 2095 (1995)

    Article  ADS  Google Scholar 

  6. S Shlomo and V Kolomietz, Rep. Prog. Phys. 68, 1 (2005)

    Article  ADS  Google Scholar 

  7. T Nandi, D Swami, P Gupta, Y Kumar, S Chakraborty and H Manjunatra, PramanaJ. Phys. 96, 84 (2022)

    Article  ADS  Google Scholar 

  8. T Frick and H Müther, Phys. Rev. C 71, 014313 (2005)

    Article  ADS  Google Scholar 

  9. M Magee, K Maguire, R Kotak, S Sim, J Gillanders, S Prentice and K Skillen, Mon. Not. R. Astron. Soc. 502, 3533 (2021)

    Article  ADS  Google Scholar 

  10. M A Hasan and J P Vary, Phys. Rev. C 50, 202 (1994)

    Article  ADS  Google Scholar 

  11. R Smolańczuk, Phys. Rev. C 56, 812 (1997)

    Article  ADS  Google Scholar 

  12. P Navrátil and W Ormand, Phys. Rev. C 68, 034305 (2003)

    Article  ADS  Google Scholar 

  13. I Stetcu, B Barrett, P Navrátil and C Johnson, Int. J. Mod. Phys. E 14, 95 (2004)

    Article  ADS  Google Scholar 

  14. J Vary et al, Eur. Phys. J. A 25, 475 (2005)

    Article  Google Scholar 

  15. M Hasan, J Vary and P Navrátil, Phys. Rev. C 69, 034332 (2004)

    Article  ADS  Google Scholar 

  16. G Bozzolo and J Vary, Phys. Rev. Lett. 53, 903 (1984)

    Article  ADS  Google Scholar 

  17. G Bozzolo and J Vary, Phys. Rev. C 31, 1909 (1985)

    Article  ADS  Google Scholar 

  18. M A Hasan, S H Köhler and J P Vary, Phys. Rev. C 36, 2649 (1987)

    Article  ADS  Google Scholar 

  19. M H Abu-Sei’leek and M A Hasan, Commun. Theor. Phys. 54, 339 (2010)

    Article  ADS  Google Scholar 

  20. M H Abu-Sei’leek, Commun. Theor. Phys. 55, 115 (2011)

    Article  Google Scholar 

  21. M H Abu-Sei’leek, Int. J. Pure Appl. Phys. 7, 73 (2011)

    Google Scholar 

  22. M H Abu-Sei’leek, PramanaJ. Phys. 76, 573 (2011)

    Article  ADS  Google Scholar 

  23. M A Hasan and J P Vary, Turk. J. Phys. 35, 273 (2011)

  24. M H Abu-Sei’leek, J. Appl. Math. Phys. 4, 586 (2018)

    Article  Google Scholar 

  25. M A Hasan and J P Vary, Iran. J. Sci. Technol., Trans. A: Sci. 43, 1365 (2019)

  26. M H Abu-Sei’leek, Nucl. Phys. Rev. 27, 399 (2010)

  27. M H Abu-Sei’leek, Nucl. Phys. Rev. 28, 416 (2011)

    Google Scholar 

  28. M H Abu-Sei’leek, J. Phys. Soc. Jpn. 80, 104201 (2011)

    Article  ADS  Google Scholar 

  29. M A Hasan and J P Vary, Turk. J. Phys. 38, 253 (2014)

    Article  Google Scholar 

  30. M H Abu-Sei’leek, J. Appl. Math. Phys. 4, 586 (2016)

    Article  Google Scholar 

  31. M H Abu-Sei’leek and E Farrag and R Masharfe, Int. J. Innov. Sci. Math. 4, 37 (2016)

    Google Scholar 

  32. M H Abu-Sei’leek, Nucl. Phys. A 1027, 122522 (2022)

    Article  Google Scholar 

  33. L Trache et al, Phys. Rev. C 54, 2361 (1996)

    Article  ADS  Google Scholar 

  34. X Yong-Zhong et al, Chin. Phys. Lett. 26, 022501 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges that this research was supported by the Deanship of Scientific Research at Zarqa University, Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Hassen Eid Abu-Sei’leek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Sei’leek, M.H.E. Delta excitation in the double magic nucleus \(^{56}\)Ni. Pramana - J Phys 97, 56 (2023). https://doi.org/10.1007/s12043-023-02532-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02532-1

Keywords

PACS Nos

Navigation