Skip to main content

Advertisement

Log in

Creation of memristive synapse connection to neurons for keeping energy balance

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Elastic synapses in realistic neurons receive external stimuli for inducing appropriate firing modes, and fast creation of synapse to neurons can regulate neural activities. The energy diversity is decreased to keep energy balance between neurons. In this work, thermistor and photocell are used to rebuild a neural circuit, and it becomes sensitive to external temperature and illumination. A magnetic flux-controlled memristor is used to bridge connection to neural circuits and its coupling channel is controlled adaptively by energy diversity. The coupling intensity is controlled exponentially when energy difference is beyond a threshold. The involvement of memristive synapse in the coupling channel activates the ability for energy pumping and storage via magnetic field. The energy propagation along the memristive channel is controlled and its value is estimated when the memristive synapse is created to connect the functional neurons. It is found that neurons can reach complete synchronisation adaptively and finally reach energy balance when magnetic field coupling via memristor is further enhanced. It explains the potential mechanism for activating memristive synaptic regulation on neurons, and the gradient energy diversity enables the creation of synapse connections to neuron and thus neurons can reach possible energy balance in the physical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L Wei, J Zhang, X An, M Nian and S Qiao, J. Appl. Math. Comput. 68, 4017 (2022)

  2. Y Yang, J Ma, Y Xu and Y Jia, Cogn. Neurodyn. 15, 265 (2021)

    Article  Google Scholar 

  3. E Adomaitiené, S Ašmontas, S Bumeliené and A Tamaševičius, Int. J. Electron. Commun. 133, 153666 (2021)

    Article  Google Scholar 

  4. K Li, H Bao, H Li, J Ma, Z Hua and B Bao, IEEE Trans. Ind. Inform. 18, 1726 (2021)

    Article  Google Scholar 

  5. Z T Njitacke, S Doubla I, I S Mabekou and J Kengne, Chaos Solitons Fractals. 137, 109785 (2020)

    Article  MathSciNet  Google Scholar 

  6. I S Doubla, B Ramakrishnan, Z T Njitacke, J Kengne and K Rajagopal, Int. J. Electron. Commun. ( AEU) 144, 154059 (2022)

    Article  Google Scholar 

  7. J F Tagne, H C Edima, Z T Njitacke, F F Kemwoue, R N Mballa and J Atangana, Euro. Phys. J. Special Topics 231, 993 (2022)

    Article  ADS  Google Scholar 

  8. J T Fossi, V Deli, H C Edima, Z T Njitacke, F F Kemwoue and J Atangana, Euro. Phys. J. B 95, 66 (2022)

    Article  ADS  Google Scholar 

  9. Z T Njitacke, I S Doubla, J Kengne and A Cheukem, Chaos 30, 023101 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. X Zhou, Y Xu, G Wang and Y Jia, Cogn. Neurodyn. 14, 569 (2020)

    Article  Google Scholar 

  11. Y Zhang, P Zhou, J Tang and J Ma, Chin. J. Phys. 71, 72-84 (2021)

    Article  Google Scholar 

  12. Y Zhang, Y Xu, Z Yao and J Ma, Nonlinear Dyn. 102, 1849 (2020)

    Article  Google Scholar 

  13. Y Xu, Y Guo, G Ren and J Ma, Appl. Math. Comput. 385, 125427 (2020)

    MathSciNet  Google Scholar 

  14. P Zhou, Z Yao, J Ma and Z Zhu, Chaos Solitons Fractals 145, 110751 (2021)

    Article  Google Scholar 

  15. H Bao, W Liu and M Chen, Nonlinear Dyn. 96, 1879 (2019)

    Article  Google Scholar 

  16. X Ye, J Mou, C Luo and Z Wang, Nonlinear Dyn. 92, 923 (2018)

    Article  Google Scholar 

  17. R Rocha, J Ruthiramoorthy and T Kathamuthu, Nonlinear Dyn. 88, 2577 (2017)

    Article  Google Scholar 

  18. H Wu, Y Ye, M Chen, Q Xu and B Bao, Nonlinear Dyn. 97, 2339 (2019)

    Article  Google Scholar 

  19. Y Xie, Z Yao, X Hu and J Ma, Chin. Phys. B 30, 120510 (2021)

    Article  ADS  Google Scholar 

  20. Y Liu, W Xu, J Ma, F Alzahrani and A Hobiny, Front. Inform. Technol. Electron. Eng. 21, 1387 (2020)

  21. M Uzuntarla, E Yilmaz, A Wagemakers and M Ozer, Commun. Nonlinear Sci. Numer. Simulat. 22, 367 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. X Song, H Wang and Y Chen, Nonlinear Dyn. 96, 2341 (2019)

    Article  Google Scholar 

  23. S Shinomoto et al, PLoS Comput. Biol. 5, e1000433 (2009)

    Article  MathSciNet  Google Scholar 

  24. N Zandi-Mehran, S Jafari, S M Hashemi Golpayegani, F Nazarimehr and M Perc, Nonlinear Dyn. 100, 1809 (2020)

  25. V Baysal, Z Saraç and E Yilmaz, Nonlinear Dyn. 97, 1275 (2019)

    Article  Google Scholar 

  26. S Blankenburg, W Wu, B Lindner and S Schreiber, J. Comput. Neurosci. 39, 349 (2015)

    Article  MathSciNet  Google Scholar 

  27. X F Zhang and J Ma, J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.) 22, 707 (2021)

  28. Y Guo, P Zhou, Z Yao and J Ma, Nonlinear Dyn. 105, 3603 (2021)

    Article  Google Scholar 

  29. Z Liu, C Wang, G Zhang and Y Zhang, Int. J. Mod. Phys. B 33, 1950170 (2019)

    Article  ADS  Google Scholar 

  30. A C Miller, L H Voelker, A N Shah and C B Moens, Curr. Biol. 25, 16 (2015)

    Article  Google Scholar 

  31. B B Ujfalussy and J K Makara, Nature Commun. 11, 1413 (2020)

    Article  ADS  Google Scholar 

  32. T Pereira, M S Baptista, J Kurths and M B Reyes, Int. J. Bifurc. Chaos 17, 3545 (2007)

    Article  Google Scholar 

  33. A Citri and R C Malenka, Neuropsychopharmacol. 33, 18 (2008)

    Article  Google Scholar 

  34. J C Magee and C Grienberger, Annu. Rev. Neurosci. 43, 95 (2020)

    Article  Google Scholar 

  35. D Meyer, T Bonhoeffer and V Scheuss, Neuron 82, 430 (2014)

    Article  Google Scholar 

  36. Z Yao and C Wang, Chaos Solitons Fractals 152, 111361 (2021)

    Article  Google Scholar 

  37. Q Zhou and D Q Wei, Nonlinear Dyn. 105, 753 (2021)

    Article  Google Scholar 

  38. S Qiu, K Sun and Z Di, Front. Comput. Neurosci. 15, 34 (2021)

    Article  Google Scholar 

  39. X Zhang, J Ma, Y Xu and G D Ren, Acta Phys. Sin. 70, 090502 (2021)

    Article  Google Scholar 

  40. X Zhang, C Wang, J Ma and G Ren, Mod. Phys. Lett. B 34, 2050267 (2020)

    Article  ADS  Google Scholar 

  41. Y Zhang, C N Wang, J Tang and J Ma, Sci. China Technol. Sci. 63, 2328 (2020)

    Article  ADS  Google Scholar 

  42. S Ma, P Zhou, J Ma and C Wang, Int. J. Mod. Phys. B 34, 2050074 (2020)

    Article  ADS  Google Scholar 

  43. L Xu, G Qi and J Ma, Appl. Math. Model 101, 503 (2022)

    Article  MathSciNet  Google Scholar 

  44. J Ma, F Wu, W Jin, P Zhou and T Hayat, Chaos 27, 053108 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  45. G D Leutcho, A J M Khalaf, Z N Tabekoueng, T F Fozin, J Kengne, S Jafari and I Hussain, Chaos 30, 033112 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. F Wu, T Hayat, X An and J Ma, Nonlinear Dyn. 94, 669 (2018)

    Article  Google Scholar 

  47. P Zhou, X Zhang and J Ma, Nonlinear Dyn. 108, 1681 (2022)

    Article  Google Scholar 

  48. Y Xie, Z Yao and J Ma, Front. Inform. Technol. Electron. Eng. 23, 1407 (2022)

    Google Scholar 

  49. Y Xu, M Liu, Z Zhu and J Ma, Chin. Phys. B 29, 098704 (2020)

    Article  ADS  Google Scholar 

  50. F Q Wu, J Ma and G Zhang, Sci. China Technol. Sci. 63, 625 (2020)

    Article  ADS  Google Scholar 

  51. A Karthikeyan and K Rajagopal, PramanaJ. Phys. 90, 14 (2018)

  52. B C Bao, Y X Zhu, J Ma, H G Wu and M Chen, Sci. China Technol. Sci. 64, 1107 (2021)

    Article  ADS  Google Scholar 

  53. C Li, Y Yang, J Du and Z Chen, Euro. Phys. J. Special Topics 230, 1723 (2021)

    Article  ADS  Google Scholar 

  54. N Raj, R K Ranjan and F Khateb, IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 28, 1050 (2020)

  55. R Yang, H M Huang and X Guo, Adv. Electron. Mater. 5, 1900287 (2019)

    Article  Google Scholar 

  56. E Juzekaeva, A Nasretdinov, S Battistoni, T Berzina, S Iannotta, R Khazipov, V Erokhin and M Mukhtarov, Adv. Mater. Technol. 4, 1800350 (2019)

    Article  Google Scholar 

  57. G Zhang, C Wang, F Alzahrani, F Wu and X An, Chaos Solitons Fractals 108, 15 (2018)

    Article  ADS  Google Scholar 

  58. F Wu, Y Zhang and X Zhang, Nonlinear Dyn. 98, 971 (2019)

    Article  Google Scholar 

  59. A Serb, A Corna, R George, A Khiat, F Rocchi, M Reato, M Maschietto, C Mayr, G Indiveri, S Vassanelli and T Prodromakis, Sci. Rep. 10, 2590 (2020)

    Article  ADS  Google Scholar 

  60. R Li, Z Wang and E Dong, Nonlinear Dyn. 104, 4459 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 12062009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Ma, J. Creation of memristive synapse connection to neurons for keeping energy balance. Pramana - J Phys 97, 55 (2023). https://doi.org/10.1007/s12043-023-02530-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02530-3

Keywords

PACS Nos

Navigation