Skip to main content
Log in

Quantum effects on modulational amplification in ion-implanted semiconductor magnetoplasmas

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Using a quantum hydrodynamic model, quantum effects (via Bohm potential) on modulational amplification in ion-implanted semiconductor magnetoplasmas are investigated. Expressions are obtained for the threshold pump amplitude and the growth rate of modulated beam for both the electrons and implanted colloids. Numerical analysis is performed for n-InSb/CO2 laser system. The dependence of the threshold pump amplitude and the growth rate of modulated beam for electrons on wave number, applied magnetic field (via electron cyclotron frequency) and electron concentration (via electron-plasma frequency) and the dependence of the threshold pump amplitude and the growth rate of modulated beam for implanted colloids on wave number and colloid concentration (via colloid-plasma frequency) are explored. The lowering in threshold pump amplitude and enhancement of the growth rate of modulated beam for both the electrons and implanted colloids are observed by incorporating the quantum effects. The analysis provides detailed information of quantum effects on modulational amplification in ion-implanted semiconductor magnetoplasmas composed of electrons and negatively charged implanted colloids and establishes the technological potentiality of chosen samples as the hosts for the fabrication of efficient optical modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. R L Sutherland, D G McLean and S Kirkpatrick, Handbook of nonlinear optics (Marcel Dekker, New York, 2003)

    Book  Google Scholar 

  2. S J Sweeney and J Mukherjee, Optoelectronic devices and materials, in: Springer handbook of electronic and photonic materials edited by S Kasap and P Capper (Springer, Cham, 2017)

    Google Scholar 

  3. R Srivastava, Recent development in optoelectronic devices (Intechopen, UK, 2018)

    Book  Google Scholar 

  4. J Yu and J Zhang, Digital Commun. Net. 2, 65 (2016)

    Article  Google Scholar 

  5. B Born, I R Hristovski, S G Gagnon and J F Holzman, Opt. Exp. 26, 5031 (2018)

    Article  Google Scholar 

  6. K Mishina, D Hisano and A Maruta, IEICE Trans. Electron. 102, 304 (2019)

    Article  ADS  Google Scholar 

  7. X Luo, Z Li, Y Guo, J Yao and Y Wu, J. Solid State Chem. 270, 674 (2019)

    Article  ADS  Google Scholar 

  8. S Mokkapati and C Jagadish, Mater. Today 12, 22 (2009)

    Article  Google Scholar 

  9. S Ghosh, G R Sharma, P Khare and M Salimullah, Physica B 351, 163 (2004)

    Article  ADS  Google Scholar 

  10. M Singh, J Gahlawat, A Sangwan, N Singh and M Singh, Nonlinear optical susceptibilities of a piezoelectric semiconductor magneto-plasma, in: Recent trends in materials and devices edited by V K Jain, S Rattan and A Verma, Springer Proceedings in Physics (Springer, Singapore, 2020) Vol. 256, Ch. 20

    Google Scholar 

  11. I Zeba, C Uzma, M Jamil, M Salimullah and P K Shukla, Phys. Plasmas 17, 032105 (2010)

    Article  ADS  Google Scholar 

  12. N F Cramer and S V Vladimivor, Phys. Scr. 53, 586 (1996)

    Article  ADS  Google Scholar 

  13. A Neogi, J. Appl. Phys. 77, 327 (1994)

    Article  ADS  Google Scholar 

  14. S Ghosh and M P Rishi, Eur. Phys. J. D 19, 223 (2002)

    ADS  Google Scholar 

  15. S Ghosh and M P Rishi, Eur. Phys. J. D 20, 275 (2002)

    Article  ADS  Google Scholar 

  16. N Nimje, S Dubey and S K Ghosh, Eur. Phys. J. D 59, 223 (2010)

    Article  ADS  Google Scholar 

  17. A Sangwan and N Singh, Rom. J. Phys. 65, 606 (2020)

    Google Scholar 

  18. P K Shukla and S Ali, Phys. Plasmas 12, 114502 (2005)

    Article  ADS  Google Scholar 

  19. G Manfredi and F Haas, Phys. Rev. B 64, 075316 (2001)

    Article  ADS  Google Scholar 

  20. F Haas, G Manfredi and J Goedert. Phys. Rev. E 64, 026413 (2001)

    Article  ADS  Google Scholar 

  21. F Hass, Phys. Plasmas 12, 062117 (2005)

    Article  ADS  Google Scholar 

  22. C L Gardner, J. Comput. Electron. 20, 230 (2021)

    Article  Google Scholar 

  23. T Ahmed, A Rehman, A Ali and S Qamar, Res. Phys. 23, 104078 (2021)

    Google Scholar 

  24. C Uzma, I Zeba, H A Shah and M Salimullah, J. Appl. Phys. 105, 013307 (2009)

    Article  ADS  Google Scholar 

  25. D Singh, B S Sharma and M Singh, Mater. Today: Proc. 49, 1383 (2022)

    Article  Google Scholar 

  26. P K Kaw, J. Appl. Phys. 14, 1497 (1973)

    Article  ADS  Google Scholar 

  27. F Haas, L G Garcia, J Goedert and G Manfredi, Phys. Plasmas 10, 3858 (2003)

    Article  ADS  Google Scholar 

  28. N Yadav, S Ghosh and P S Malviya, Chin. Phys. B 26, 015203 (2017)

    Article  ADS  Google Scholar 

  29. D Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  30. D Bohm, Phys. Rev. 85, 180 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  31. N F Hartmann, M Otten, I Fedin, D Talapin, M Cygorek, P Korkusinski, S Gray, A Hartschuh and X Ma, Nat. Commun. 10, 3253 (2019)

    Article  ADS  Google Scholar 

  32. A Yariv, Optical electronics, 3rd Edn (Holl-Saunders, New York, 1984) pp. 395–401

    Google Scholar 

  33. R James and D Smith, IEEE J. Quant. Electron. 18, 1841 (1982)

    Article  ADS  Google Scholar 

  34. M Salimullah and T Singh, J. Phys. Chem. Solids 43, 1087 (1982)

    Article  ADS  Google Scholar 

  35. A Kumar, S Dahiya, N Singh and M Singh, J. Nonlin. Opt. Phys. Mater. 30, 2150010 (2021)

    Article  Google Scholar 

  36. J Gahlawat and S Dahiya, Pramana – J. Phys. 95, 42 (2021)

    Article  ADS  Google Scholar 

  37. J Singh, S Dahiya and M Singh, Pramana – J. Phys. 95, 208 (2021)

    Article  ADS  Google Scholar 

  38. M Singh, A Sangwan, Sanjay and M Singh, J. Opt. 50, 209 (2021)

    Article  Google Scholar 

  39. S Chaudhary, N Yadav and S Ghosh, AIP Conf. Proc. 1670, 030003 (2015)

    Google Scholar 

  40. P S Malviya, N Yadav and S Ghosh, Appl. Math. Nonlinear Sci. 3, 303 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to Prof. B S Sharma, Vice Chancellor, Lords University, Chikani, Alwar (Rajasthan) for many useful suggestions and Prof. Sib Krishna Ghoshal, Department of Physics, Universiti Teknologi, Malaysia for careful reading of the final draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devender Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pravesh, Dahiya, S., Singh, D. et al. Quantum effects on modulational amplification in ion-implanted semiconductor magnetoplasmas. Pramana - J Phys 97, 58 (2023). https://doi.org/10.1007/s12043-023-02525-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02525-0

Keywords

PACS Nos

Navigation