Skip to main content
Log in

Hamilton–Jacobi approach to thermodynamic transformations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this note, we formulate and study a Hamilton–Jacobi approach for describing thermodynamic transformations. The thermodynamic phase space assumes the structure of a contact manifold with the points representing equilibrium states being restricted to certain submanifolds of this phase space. We demonstrate that Hamilton–Jacobi theory consistently describes thermodynamic transformations on the space of externally controllable parameters or equivalently the space of equilibrium states. It turns out that in the Hamilton–Jacobi description, the choice of the principal function is not unique but, the resultant dynamical description for a given transformation remains the same irrespective of this choice. Some examples involving thermodynamic transformations of the ideal gas are discussed where the characteristic curves on the space of equilibrium states completely describe the dynamics. The geometric Hamilton–Jacobi formulation which has emerged recently is also discussed in the context of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Goldstein, C Poole and J Safko, Classical mechanics, 3rd Edn (Addison-Wesley, 2001)

  2. V I Arnold, Mathematical methods of classical mechanics, Graduate texts in mathematics, 2nd Edn (Springer-Verlag, New York, 1989) Vol. 60

  3. H Geiges, An introduction to contact topology (Cambridge University Press, 2008)

  4. V I Arnold, Singularities of caustics and wave fronts (Springer, Netherlands, 1990)

    Book  Google Scholar 

  5. M de Leon and C Sardon, J. Phys. A: Math. Theor. 50, 255205 (2017)

    Article  ADS  Google Scholar 

  6. A Bravetti, H Cruz and D Tapias, Ann. Phys. 376, 17 (2017)

    Article  ADS  Google Scholar 

  7. R Mrugala, J D Nulton, J C Schon and P Salamon, Rep. Math. Phys. 29,109 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. R Mrugala, Rep. Math. Phys. 33, 149 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. G Hernandez and E A Lacomba, J. Differ. Geom. Appl. 8, 205 (1998)

    Article  Google Scholar 

  10. R Mrugala, Rep. Math. Phys. 46, 461 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. R Mrugala, RIMS Kokyuroku 1142, 167 (2000)

    Google Scholar 

  12. S G Rajeev, Ann. Phys. 323, 2265 (2008)

    Article  ADS  Google Scholar 

  13. A Bravetti, C S Lopez-monsalvo and F Nettel, Ann. Phys. 361, 377 (2015)

    Article  Google Scholar 

  14. J M Isidro and P F de Cardoba, Entropy 20, 247 (2018)

    Article  ADS  Google Scholar 

  15. R Hermann, Geometry, physics, and systems (M Dekker Publisher, 1973)

  16. M J Peterson, Am. J. Phys. 47, 488 (1979)

    Article  ADS  Google Scholar 

  17. G Ruppeiner, Phys. Rev. A 20, 1608 (1979)

    Article  ADS  Google Scholar 

  18. G Ruppeiner, Rev. Mod. Phys. 67, 605 (1995); Erratum, Rev. Mod. Phys. 68, 313 (1996)

  19. F Weinhold, J. Chem. Phys. 63, 2479 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  20. R Mrugala, J D Nulton, J C Schon and P Salamon, Phys. Rev. A 41, 3156 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  21. J Shen, R-G Cai, B Wang and R-K Su, Int. J. Mod. Phys. A 22, 11 (2007)

    Article  ADS  Google Scholar 

  22. H Quevedo, Gen. Rel. Grav. 40, 971 (2008)

    Article  ADS  Google Scholar 

  23. S-W Wei, Y-X Liu and R B Mann, Phys. Rev. Lett. 123, 071103 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. S-W Wei, Y-X Liu and R B Mann, Phys. Rev. D 100, 124033 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. A Ghosh and C Bhamidipati, Phys. Rev. D 100, 126020 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. M C Baldiotti, R Fresneda and C Molina, Ann. Phys. 382, 22 (2017)

    Article  ADS  Google Scholar 

  27. M de Leon, M Lainz and A Muniz-Brea, Mathematics 9, 1993 (2021)

    Article  Google Scholar 

  28. O Esen, M de Leon, M Lainz, C Sardon and M Zajac, J. Phys. A: Math. Theor. 55, 403001(2022)

    Article  Google Scholar 

  29. T Wada, A M Scarfone and H Matsuzoe, Physica A 570, 125820 (2021)

    Article  Google Scholar 

  30. G E Crooks, Phys. Rev. Lett. 99, 100602 (2007)

    Article  ADS  Google Scholar 

  31. D A Sivak and G E Crooks, Phys. Rev. Lett. 108, 190602 (2012)

    Article  ADS  Google Scholar 

  32. P R Zulkowski, D A Sivak, G E Crooks and M R DeWeese, Phys. Rev. E 86, 041148 (2012)

    Article  ADS  Google Scholar 

  33. M Grmela and H C Ottinger, Phys. Rev. E 56, 6620 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  34. M Grmela and H C Ottinger, Phys. Rev. E 56, 6633 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  35. M Grmela, Physica A 309, 304 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  36. M Grmela, Entropy 16(3), 1652 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  37. M Grmela, Entropy 23(2), 165 (2021)

    Article  ADS  Google Scholar 

  38. P Guha, J. Math. Anal. Appl. 326, 121 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The paper is dedicated to Dr Asok K Das, on the occasion of his 50th birthday. The author is grateful to Chandrasekhar Bhamidipati for useful discussions. The financial assistance received from the Ministry of Education (MoE), Government of India, in the form of a Prime Minister’s Research Fellowship (PMRF ID: 1200454) is gratefully acknowledged. The author is also thankful to the anonymous referees for their suggestions which have lead to an improvement of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Ghosh.

Additional information

Dedicated to Dr Asok Kumar Das on the occasion of his 50th birthday with deep respect and admiration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A. Hamilton–Jacobi approach to thermodynamic transformations. Pramana - J Phys 97, 49 (2023). https://doi.org/10.1007/s12043-023-02523-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02523-2

Keywords

PACS Nos

Navigation