Skip to main content
Log in

Periodic bursting oscillations involving stick–slip motions as well as the generation mechanism in a Filippov-type slow–fast dynamical system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

By taking a low-frequency excited modified Chua’s circuit model with discontinuous vector field as an academic example, this paper introduces the periodic bursting patterns characterised by stick–slip motions as well as the underlying generation mechanism uniquely belonging to Filippov-type slow–fast dynamical systems (FSFDSs). Based on the tangencies and the visibilities, this paper is the first to clearly explain the unique transition routes to bursting phenomena involving stick–slip motions by introducing the subdivisions of the sliding region. The results indicate that such transition routes are heavily dependent on the local structures of pseudoequilibrium (PE), performing distinct non-conventional bifurcation schemes. Furthermore, two transition routes respectively corresponding to a stable node-type PE and a stable focus-type PE as well as the induced periodic bursting oscillations are further discussed in numerical simulations. Particularly, it should be pointed out that the second one is a novel route to bursting oscillation in FSFDSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C Germay, V Denoël and E Detournay, J. Sound Vib. 325, 362 (2009)

    Article  ADS  Google Scholar 

  2. A Depouhon and E Detournay, J. Sound Vib. 333, 2019 (2014)

    Article  ADS  Google Scholar 

  3. M J Moharrami, C de Arruda Martins and H Shiri, Appl. Ocean Res. 108, 102521 (2021)

  4. C Germay, N van de Wouw, H Nijmeijer and R Sepulchre, SIAM J. Appl. Dyn. Syst. 8, 527 (2009)

  5. X B Liu, N Vlajic, X H Long, G Meng and B Balachandran, Nonlinear Dyn. 72, 61 (2013)

    Article  Google Scholar 

  6. Z T Zhusubaliyev, V Avrutin, V G Rubanov and D A Bushuev, Physica D 420, 132870 (2021)

    Article  Google Scholar 

  7. B Wu, J S Méndez Harper and J C Burton, Exp. Mech. 61, 1067 ( 2021)

    Article  Google Scholar 

  8. D A Stavreva, D A Garcia, G Fettweis, P R Gudla, G F Zaki, V Soni, V McGowan, G Williams, A Huynh, M Palangat, R L Schiltz, T A Johnson, D M Presman, M L Ferguson, G Pegoraro, A Upadhyaya and G L Hage, Mol. Cell 75, 1161 (2019)

  9. E M Izhikevich and G M Edelman, Proc. Natl. Acad. Sci. USA 105, 3593 (2008)

    Article  ADS  Google Scholar 

  10. T Grőbler, G Barna and P Érdi, Biol. Cybern. 79, 301 (1998)

  11. J Karbowski and N Kopell, Neural Comput. 12, 1573 (2000)

    Article  Google Scholar 

  12. S Coombes, R Thul and K C A Wedgwood, Physica D 241, 2042 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. X F Geng and H Ding, Nonlinear Dyn. 104, 3269 (2021)

    Article  Google Scholar 

  14. M di Bernardo, C J Budd, A R Champneys and P Kowalczyk, Piecewise-smooth dynamical systems: Theory and applications (Springer-Verlag, London, 2008)

    MATH  Google Scholar 

  15. A Colombo, M di Bernardo, S J Hogan and M R Jeffrey, Physica D 241, 1845 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. E M Izhikevich, Int. J. Bifurc. Chaos 10, 1171 (2000)

    Article  MathSciNet  Google Scholar 

  17. R Bertram and J E Rubin, Math. Biosci. 287, 105 (2016)

    Article  Google Scholar 

  18. N Fenichel, J. Differ. Equs 31, 53 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  19. J Rinzel and Y S Lee, J. Mol. Biol. 25, 653 (1987)

    Google Scholar 

  20. H F Han and Q S Bi, Int. J. Bifurc. Chaos 30, 2050168 (2020)

    Article  Google Scholar 

  21. Z X Wang, C Zhang, Z D Zhang and Q S Bi, Pramana – J. Phys. 94, 95 (2020)

    Article  ADS  Google Scholar 

  22. R Zhang, M Peng, Z D Zhang and Q S Bi, Chin. Phys. B 27, 110501 (2018)

    Article  ADS  Google Scholar 

  23. J M Ginoux and J Llibre, Qual. Theor. Dyn. Syst. 15, 383 (2016)

    Article  Google Scholar 

  24. W Marszalek and Z Trzaska, Circ. Syst. Signal Process. 29, 1075 (2010)

    Article  Google Scholar 

  25. R Qu and S L Li, Shock Vib. 2019, 8213808 (2019)

    Google Scholar 

  26. Z D Zhang, Z Y Chen and Q S Bi, Theor. Appl. Mech. Lett. 9, 358 (2019)

    Article  Google Scholar 

  27. Z F Qu, Z D Zhang, M Peng and Q S Bi, Pramana – J. Phys. 91, 72 (2018)

    Article  ADS  Google Scholar 

  28. B Y Shen and Z D Zhang, Pramana – J. Phys. 95, 97 (2021)

    Article  ADS  Google Scholar 

  29. W H Mao, Pramana – J. Phys. 96, 79 (2022)

    Article  ADS  Google Scholar 

  30. X D Sun and Y N Xiao, Int. J. Bifurc. Chaos 28, 1850064 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos 11632008, 1200-2299 and 11872189) and the Scientific Research Innovation Foundation of Jiangsu Province (Grant No. KYLX15_1044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Han, H., Qu, R. et al. Periodic bursting oscillations involving stick–slip motions as well as the generation mechanism in a Filippov-type slow–fast dynamical system. Pramana - J Phys 97, 22 (2023). https://doi.org/10.1007/s12043-022-02500-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02500-1

Keywords

PACS Nos

Navigation