Skip to main content
Log in

Effect of the number of quantum dots on transport properties of multiple quantum dot systems in T-shaped topology

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate the mesoscopic electron transport through multiple quantum dot systems in a T-shaped configuration and analyse the effect of the number of quantum dots on transport observables. Analytically, the expressions for the transmission probability and current have been derived, in the presence of intradot Coulomb interaction, using non-equilibrium Green function techniques. The higher-order Green functions containing the Coulomb interaction term have been decoupled using the mean-field approximation. The analytical, as well as the numerical, calculations have been presented for single, double and triple quantum dot systems in T-shaped configuration and then the results have been generalised for N number of quantum dots in the same configuration. The transport observables, such as transmission coefficient, I–V characteristics and differential conductance, have been numerically analysed. Numerical results show a systematic variation in the number of transmission spectrum peaks as the number of quantum dots side-coupled to the active dot increases. It is found that the number of the transmission probability peaks is directly related to the number of quantum dots and the peak spacings are controlled by the inter-dot coupling strength. However, the magnitude of the current is hardly affected by the increase in the number of side-coupled dots in T-shaped quantum dot systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D Vasileska, D Mamaluy, I Knezevic, H R Khan and S M Goodnick, Quantum transport in nanoscale devices: Encyclopedia of nanoscience and nanotechnology (American Scientific Publishers, Syracuse, 2010)

    Google Scholar 

  2. D Bimberg, M Grundmann and N N Ledentsov, Quantum dot heterostructures (Wiley, New York, 1999)

    Google Scholar 

  3. K Goser, P Glosekotter and V Dienstuhl, Nano electronics & nano systems (Springer, 2004)

    Google Scholar 

  4. W George and Hanson, Fundamentals of nanoelectronics (Pearson, 2011)

    Google Scholar 

  5. Peercy and S Paul, Nature 406, 1023 (2000)

    Article  Google Scholar 

  6. D Loss and D P DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  7. J M Elzerman et al, Nature 430, 431 (2004)

    Article  ADS  Google Scholar 

  8. R Hanson, L P Kouwenhoven, J R Petta, S Tarucha and L M K Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  9. S Stobbe, J Johansen, P T Kristensen, J M Hvam and P Lodahl, Phys. Rev. B 80, 155307 (2009)

    Article  ADS  Google Scholar 

  10. Q Wang, S Stobbe and P Lodahl, Phys. Rev. Lett. 107, 167404 (2011)

    Article  ADS  Google Scholar 

  11. Ankhi Maiti and Sagarika Bhattacharyya, Int. J. Chem. Chem. Eng. 3, 37 (2013)

    Google Scholar 

  12. X Michalet et al, Science 307, 538 (2005)

    Article  ADS  Google Scholar 

  13. W Izumida and O Sakai, Phys. Rev. B 62, 10260 (2000)

    Article  ADS  Google Scholar 

  14. W Izumida, O Sakai and S Suzuki, J. Phys. Soc. Japan 70, 1045 (2001)

    Article  ADS  Google Scholar 

  15. G Chen, G Klimeck and S Dutta, Phys. Rev. B 50, 8035 (1994)

    Article  ADS  Google Scholar 

  16. C A Stafford and S Das Sarma, Phys. Rev. Lett. 72, 3590 (1994)

    Article  ADS  Google Scholar 

  17. Sushil Lamba and S K Joshi, Phys. Rev. B 62, 1580 (2000)

    Article  ADS  Google Scholar 

  18. Chang Niu, Li-jun Liu and Tsung-han Lin, Phys. Rev. B 51, 5130 (1995)

    Article  ADS  Google Scholar 

  19. Shyam Chand, R K Moudgil and P K Ahluwalia, Physica B 405, 239 (2010)

    Article  ADS  Google Scholar 

  20. Shyam Chand, G Rajput, K C Sharma P K Ahluwalia Pramana – J. Phys. 72, 887 (2009)

    Article  ADS  Google Scholar 

  21. K Kobayashi, H Aikawa, S Katusmoto and Y Iye, Phys. Rev. Lett. 88, 256806 (2002)

    Article  ADS  Google Scholar 

  22. P A Orellana, M L Ladron de Guevera and F Claro, Phys. Rev. B 70, 233315 (2004)

    Article  ADS  Google Scholar 

  23. M L Ladron de Guevara and P A Orellana, Braz. J. Phys. 36 (2006)

    Article  ADS  Google Scholar 

  24. S Chand and S Devi, Int. J. Sci. Res. Phys. Appl. Sci. 9, 20 (2021)

    Google Scholar 

  25. Sushila Devi, P K Ahluwalia and Shyam Chand, Pramana – J. Phys. 94, 60 (2020)

    Article  ADS  Google Scholar 

  26. C Volk, A M J Zwerver, U Mukhopadhyay, P T Eendebak, C J van Diepen, J P Dehollain, T Hensgens, T Fujita, C Reichl, W Wegscheider and L M K Vandersypen, npj Quantum Inf. 5, 29 (2019)

  27. A R Mills, D M Zajac, M J Gullans, F J Schupp, T M Hazard and J R Petta, Nat. Commun. 10 (2019)

    Article  Google Scholar 

  28. Takumi Ito, Tomohiro Otsuka, Shinichi Amaha, Matthieu R. Delbecq, Takashi Nakajima, Jun Yoneda, Kenta Takeda, Giles Allison, Akito Noiri, Kento Kawasaki and SeigoTarucha, Sci. Rep. 6, 39113 (2016)

    Article  ADS  Google Scholar 

  29. C Lacroix, J. Phys. F 11, 2389 (1981)

    Article  ADS  Google Scholar 

  30. D N Zubarev, Sov. Phys. Usp. 3, 320 (1960)

    Article  ADS  Google Scholar 

  31. Tae-Suk Kim and S Hershfield, Phys. Rev. B 63, 245326 (2001)

    Article  ADS  Google Scholar 

  32. P W Anderson, Phys. Rev. 124, 41 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  33. L V Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)]

  34. L P Kadanoff and G Baym, Quantum statistical mechanics (Benjamin, New York, 1962)

    MATH  Google Scholar 

  35. C Caroli, R Combescot, P Nozieres and D Saint-James, J. Phys. C 4, 916 (1971)

    Article  ADS  Google Scholar 

  36. G D Mahan, Many particle physics (Plenum Press, New York, 2000)

    Book  Google Scholar 

  37. Y Meir and N S Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  38. A P Jouho, N S Wingreen and Y Meir, Phys. Rev. B 50, 5528 (1994); N S Wingreen and Y Meir, Phys. Rev. B 49, 11040 (1994)

  39. H Haug and A P Jauho, Quantum kinetics in transport and optics of semiconductors (Springer, NY, 2008)

    Google Scholar 

  40. L G Mourokh, N J M Horing and A Y Smirnov, Phys. Rev. B 66, 085332 (2002)

    Article  ADS  Google Scholar 

  41. S Devi, B B Brogi, P K Ahluwalia and S Chand, Physica B 539, 111 (2018)

    Article  ADS  Google Scholar 

  42. S Dutta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Chand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chand, S., Devi, S. & Kondal, N. Effect of the number of quantum dots on transport properties of multiple quantum dot systems in T-shaped topology. Pramana - J Phys 97, 18 (2023). https://doi.org/10.1007/s12043-022-02494-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02494-w

Keywords

PACS Nos

Navigation