Skip to main content
Log in

An experimental set-up to probe the quantum transport through a single atomic\(/\)molecular junction at room temperature

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Understanding the transport characteristics at the atomic limit is the prerequisite for futuristic nanoelectronic applications. Among various experimental procedures, mechanically controllable break junction (MCBJ) is a well-adopted experimental technique to study and control atomic or molecular scale devices. Here, we present the details of developing a piezo-controlled table-top MCBJ set-up, working at ambient conditions, along with the necessary data acquisition technique and analysis of the data. We performed the conductance experiment on a macroscopic gold wire, which exhibits a quantised conductance plateau upon pulling the wire. Conductance peak up to ~ 20G0 (G0 = 2e2\(/\)h where e is the electronic charge and h is the Planck’s constant) could be resolved at room temperature. A well-known test bed molecule, 4,4′-bipyridine, was introduced between the gold electrodes and the conductance histogram exhibits two distinctive conductance peaks, confirming the formation of a single molecular junction, in line with the previous reports. This demonstrates that our custom-designed MCBJ set-up can measure the quantum transport of a single molecular junction at ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. A Aviram and M A Ratner, Chem. Phys. Lett. 29, 277 (1974)

    Article  ADS  Google Scholar 

  2. R Landauer, IBM J. Res. Dev. 44, 251 (2000)

    Article  Google Scholar 

  3. M Thoss and F Evers, J. Chem. Phys. 148 (2018)

    Article  ADS  Google Scholar 

  4. J Wang, H Guo, J L Mozos, C C Wan and G Taraschi, Phys. Rev. Lett. 80, 4277 (1998)

    Article  ADS  Google Scholar 

  5. K Terabe, T Hasegawa, T Nakayama and M Aono, Nature 433, 45 (2005)

    Article  ADS  Google Scholar 

  6. A N Pal, D Li, S Sarkar, S Chakrabarti, A Vilan, L Kronik, A Smogunov and O Tal, Nat. Commun. 10, 5565 (2019)

    Article  ADS  Google Scholar 

  7. L Zhou, S W Yang, M F Ng, M B Sullivan, V B C Tan and L Shen, J. Am. Chem. Soc. 130, 4023 (2008)

    Article  Google Scholar 

  8. C A Nijhuis, W F Reus and G M Whitesides, J. Am. Chem. Soc. 132, 18386 (2010)

    Article  Google Scholar 

  9. Y Matsuura, J. Chem. Phys. 138, 014311 (2013)

    Article  ADS  Google Scholar 

  10. M A Reed, C Zhou, C J Muller, T P Burgin and J M Tour, Science 278, 1 (1997)

    Article  Google Scholar 

  11. M Nikiforov, MRS Bull. 28, 790 (2003)

    Article  Google Scholar 

  12. Y S Park, A C Whalley, M Kamenetska, M L Steigerwald, M S Hybertsen, C Nuckolls and L Venkataraman, J. Am. Chem. Soc. 129, 15768 (2007)

    Article  Google Scholar 

  13. W Hong, D Z Manrique, P Moreno-García, M Gulcur, A Mishchenko, C J Lambert, M R Bryce and T Wandlowski, J. Am. Chem. Soc. 134, 2292 (2012)

    Article  Google Scholar 

  14. V Kaliginedi, P Moreno-García, H Valkenier, W Hong, V M García-Suárez, P Buiter, J L H Otten, J C Hummelen, C J Lambert and T Wandlowski, J. Am. Chem. Soc. 134, 5262 (2012)

    Article  Google Scholar 

  15. M Kiguchi, O Tal, S Wohlthat, F Pauly, M Krieger, D Djukic, J C Cuevas and J M Van Ruitenbeek, Phys. Rev. Lett. 101, 1 (2008)

    Article  Google Scholar 

  16. F Evers, R Korytár, S Tewari and J M Van Ruitenbeek, Rev. Mod. Phys. 92, 35001 (2020)

    Article  Google Scholar 

  17. H Song, Y Kim, Y H Jang, H Jeong, M A Reed and T Lee, Nature 462, 1039 (2009)

    Article  ADS  Google Scholar 

  18. J Bai, A Daaoub, S Sangtarash, X Li, Y Tang, Q Zou, H Sadeghi, S Liu, X Huang, Z Tan, J Liu, Y Yang, J Shi, G Mészáros, W Chen, C Lambert and W Hong, Nat. Mater. 18, 364 (2019)

    Article  ADS  Google Scholar 

  19. R Baer and D Neuhauser, J. Am. Chem. Soc. 124, 4200 (2002)

    Article  Google Scholar 

  20. L Y Hsu and H Rabitz, Phys. Rev. Lett. 109, 3 (2012)

    Article  Google Scholar 

  21. M Kalla, N R Chebrolu and A Chatterjee, Sci. Rep. 11, 1 (2021)

    Article  Google Scholar 

  22. J P Bergfield, G C Solomon, C A Stafford and M A Ratner, Nano Lett. 11, 2759 (2011)

    Article  ADS  Google Scholar 

  23. R Liu, Y Han, F Sun, G Khatri, J Kwon, C Nickle, L Wang, C Wang, D Thompson, Z Li, C A Nijhuis and E del Barco, Adv. Mater. 34, 2202135 (2022)

    Article  Google Scholar 

  24. L Venkataraman, J E Klare, C Nuckolls, M S Hybertsen and M L Steigerwald, Nature 442, 904 (2006)

    Article  ADS  Google Scholar 

  25. C Li, I Pobelov, T Wandlowski, A Bagrets, A Arnold and F Evers, J. Am. Chem. Soc. 130, 318 (2008)

    Article  Google Scholar 

  26. D S Seferos, A S Blum, J G Kushmerick and G C Bazan, J. Am. Chem. Soc. 128, 11260 (2006)

    Article  Google Scholar 

  27. J Park, A N Pasupathy, J I Goldsmith, C Chang, Y Yalsh, J R Petta, M Rinkoski, J P Sethna, H D Abruña, P L McEuen and D C Ralph, Nature 417, 722 (2002)

    Article  ADS  Google Scholar 

  28. E A Osorio, T Bjørnholm, J M Lehn, M Ruben and H S J Van Der Zant, J. Phys. Condens. Matter 20, 374121 (2008)

    Article  Google Scholar 

  29. J Chen, M A Reed, A M Rawlett and J M Tour, Science 286, 1550 (1999)

    Article  Google Scholar 

  30. T Dadosh, Y Gordin, R Krahne, I Khivrich, D Mahalu, V Frydman, J Sperling, A Yacoby and I Bar-Joseph, Nature 436, 677 (2005)

    Article  ADS  Google Scholar 

  31. K Slowinski, H K Y Fong and M Majda, J. Am. Chem. Soc. 121, 7257 (1999)

    Article  Google Scholar 

  32. R Haag, M A Rampi, R E Holmlin and G M Whitesides, J. Am. Chem. Soc. 121, 7895 (1999)

    Article  Google Scholar 

  33. J Moreland and J W Ekin, J. Appl. Phys. 58, 3888 (1985)

    Article  ADS  Google Scholar 

  34. C J Muller, J M van Ruitenbeek and L J de Jongh, Phys. Rev. Lett. 69, 140 (1992)

    Article  ADS  Google Scholar 

  35. R Vardimon, T Yelin, M Klionsky, S Sarkar, A Biller, L Kronik and O Tal, Nano Lett. 14, 2988 (2014)

    Article  ADS  Google Scholar 

  36. S Y Quek, M Kamenetska, M L Steigerwald, H J Choi, S G Louie, M S Hybertsen, J B Neaton and L Venkataraman, Nat. Nanotechnol. 4, 230 (2009)

    Article  ADS  Google Scholar 

  37. T Yelin, R Korytár, N Sukenik, R Vardimon, B Kumar, C Nuckolls, F Evers and O Tal, Nat. Mater. 15, 444 (2016)

    Article  ADS  Google Scholar 

  38. D Stefani, K J Weiland, M Skripnik, C Hsu, M L Perrin, M Mayor, F Pauly and H S J Van Der Zant, Nano Lett. 18, 5981 (2018)

    Article  ADS  Google Scholar 

  39. M Frei, S V Aradhya, M S Hybertsen and L Venkataraman, J. Am. Chem. Soc. 134, 4003 (2012)

    Article  Google Scholar 

  40. L Cui, S Hur, Z A Akbar, J C Klöckner, W Jeong, F Pauly, S Y Jang, P Reddy and E Meyhofer, Nature 572, 628 (2019)

    Article  ADS  Google Scholar 

  41. O S Lumbroso, L Simine, A Nitzan, D Segal and O Tal, Nature 562, 240 (2018)

    Article  ADS  Google Scholar 

  42. R Frisenda, G D Harzmann, J A Celis Gil, J M Thijssen, M Mayor and H S J Van Der Zant, Nano Lett. 16, 4733 (2016)

    Article  ADS  Google Scholar 

  43. D Rakhmilevitch, S Sarkar, O Bitton, L Kronik and O Tal, Nano Lett. 16, 1741 (2016)

    Article  ADS  Google Scholar 

  44. F Evers et al, Adv. Mater. 34, 1 (2022)

    Article  Google Scholar 

  45. S A G Vrouwe, E Van Der Giessen, S J Van Der Molen, D Dulic, M L Trouwborst and B J Van Wees, Phys. Rev. B: Condens. Matter Mater. Phys. 71, 1 (2005)

    Article  Google Scholar 

  46. D Snoke, S Denev, Y Liu, L N Pfeiffer and K West, Nature 418, 754 (2002)

    Article  ADS  Google Scholar 

  47. A I Yanson, I K Yanson and J M Van Rultenbeek, Nature 400, 144 (1999)

    Article  ADS  Google Scholar 

  48. A I Mares and J M Van Ruitenbeek, Phys. Rev. B: Condens. Matter Mater. Phys. 72, 1 (2005)

    Article  Google Scholar 

  49. M Kumar, K K V Sethu and J M Van Ruitenbeek, Phys. Rev. B: Condens. Matter Mater. Phys. 91, 1 (2015)

    Google Scholar 

  50. J M Krans, J M Van Ruitenbeek, V V Fisun, I K Yanson and L J De Jongh, Nature 375, 767 (1995)

    Article  ADS  Google Scholar 

  51. A Magyarkuti, Z Balogh, G Mezei and A Halbritter, J. Phys. Chem. Lett. 12, 1759 (2021)

    Article  Google Scholar 

  52. A Magyarkuti, N Balogh, Z Balogh, L Venkataraman and A Halbritter, Nanoscale 12, 8355 (2020)

    Article  Google Scholar 

  53. B Pabi, D Mondal, P Mahadevan and A N Pal, Phys. Rev. B 104, 1 (2021)

    Article  Google Scholar 

  54. R Landauer, IBM J. Res. Dev. 32, 306 (1988)

    Article  Google Scholar 

  55. M B̈ttiker, Y Imry, R Landauer and S Pinhas, Phys. Rev. B 31, 6207 (1985)

    Article  ADS  Google Scholar 

  56. W Wang, T Lee and A Reed, Phys. Rev. B: Condens. Matter Mater. Phys. 68, 1 (2003)

    Google Scholar 

  57. S M Sze, Book Review: Semiconductor Devices — Physics and Technology (John Wiley & Sons, United States of America, 1986)

    Google Scholar 

  58. M Kamenetska, Single molecule junction conductance and binding geometry, Ph.D. Thesis (Columbia University, 2012)

  59. J E Greenwald, J Cameron, N J Findlay, T Fu, S Gunasekaran, P J Skabara and L Venkataraman, Nat. Nanotechnol. 16, 313 (2021)

    Article  ADS  Google Scholar 

  60. P J Wheeler, J N Russom, K Evans, N S King and D Natelson, Nano Lett. 10, 1287 (2010)

    Article  ADS  Google Scholar 

  61. M Kamenetska, S Y Quek, A C Whalley, M L Steigerwald, H J Choi, S G Louie, C Nuckolls, M S Hybertsen, J B Neaton and L Venkataraman, J. Am. Chem. Soc. 132, 6817 (2010)

    Article  Google Scholar 

  62. K Horiguchi, S Kurokawa and A Sakai, J. Chem. Phys. 131 (2009)

    Article  ADS  Google Scholar 

  63. T Kim, P Darancet, J R Widawsky, M Kotiuga, S Y Quek, J B Neaton and L Venkataraman, Nano Lett. 14, 794 (2014)

    Article  ADS  Google Scholar 

  64. Z L Li, B Zou, C K Wang and Y Luo, Phys. Rev. B 73, 1 (2006)

    Google Scholar 

  65. I Bâldea, J. Phys. Chem. C 118, 8676 (2014)

    Article  Google Scholar 

  66. P Makk, D Tomaszewski, J Martinek, Z Balogh, S Csonka, M Wawrzyniak, M Frei, L Venkataraman and A Halbritter, ACS Nano 6, 3411 (2012)

    Article  Google Scholar 

  67. C Untiedt, A I Yanson, R Grande, G Rubio-Bollinger, N Agraït, S Vieira and J M van Ruitenbeek, Phys. Rev. B: Condens. Matter Mater. Phys. 66, 854181 (2002)

    Article  Google Scholar 

  68. J G Simmons, J. Appl. Phys. 34, 1793 (1963)

    Article  ADS  Google Scholar 

  69. H B Michaelson, J. Appl. Phys. 48, 4729 (1977)

    Article  ADS  Google Scholar 

  70. O Y Kolesnychenko, O I Shklyarevskii and H van Kempen, Phys. Rev. Lett. 83, 2242 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

B Pabi acknowledges the support from DST-Inspire fellowship (Inspire code IF170934) and A N Pal acknowledges the funding from the Department of Science and Technology (Grant No. CRG/2020/004208). The authors acknowledge Amit Ghosh for the technical help in designing the experimental set-up at the workshop and chracterisation facilities under the TRC project at SNBNCBS. Authors appreciate help from Ayelet Vilan regarding the MATLAB code and Oren Tal for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biswajit Pabi or Atindra Nath Pal.

Appendices

Appendix A: Calibration between the displacement (or electrode separation) and the voltage applied to piezoelement

Experimentally, distance between two electrodes is manipulated by applying a voltage to the piezoelectric actuator. Adopting the procedure from ref. [67], exponential dependence of the current on the vacuum gap is used to make a rough calibration of the gap size. Linear relation between the piezoexpansion that means the voltage at piezo (\({V}_{\mathrm{piezo}}\)) and gap size (\(\Delta \)) (i.e. electrode separation or displacement) helps to define a simple calibration constant \((c)\),

$$c= \frac{\Delta }{{V}_{\mathrm{piezo}}}.$$
(A1)

Tunnel current (I) between two electrodes which are separated by a distance \(\Delta \) (provided the applied voltage V0 is smaller than the work function of the electrodes) can be expressed as [68]

$$I \left({V}_{0}\right)=k{V}_{0}{\mathrm{e}}^{-2\Delta \sqrt{2m\phi /{\mathrm{\hslash }}^{2}}},$$
(A2)

where m is the mass of the electron, \(\phi \) is the work function of the electrode, \(k\) is a constant related to the area of the electrode and to the electron density of states at the Fermi level and \(\hslash \) is the reduced Planck constant. Resistance of the tunnel junction is thus,

$$R= {R}_{0}{\mathrm{e}}^{2\Delta \sqrt{2m\phi /{\hslash }^{2}}}.$$
(A3)

Combining eqs (A1) and (A3), we can write,

$$R= {R}_{0}{\mathrm{e}}^{2{c}\mathrm{V}_{\mathrm{piezo}}\sqrt{2m\phi /{\hslash }^{2}}}.$$
(A4)

Slope m of the logarithmic resistance with respect to the piezovoltage is thus

$$m=\frac{\partial (\mathrm{ln}R)}{\partial {V}_{\mathrm{piezo}}}=\frac{\partial (2{c}\mathrm{V}_{\mathrm{piezo}}\sqrt{2m\phi /{\hslash }^{2}})}{\partial {V}_{\mathrm{piezo}}}= \frac{\sqrt{2m\phi }}{\hslash }2c ,$$
(A5)
$$ {\text{Calibration}}\,{\text{constant}},c = \frac{m*\hbar }{{2\sqrt {2m\phi } }}. $$
(A6)

This expression is indeed very simple and clean electrodes follow an exponential behaviour (shown in figure 7a) of the current as a function of \({V}_{\mathrm{piezo}}\), which would make this a suitable method to calibrate the gap size with voltage applied to the piezoelectric actuator. A histogram of calibration constant (shown in figure 7b) is prepared using slopes, calculated from a large number of conductance traces. Then, most frequent \(c\) value is obtained by Gaussian fitting to this histogram and is used further to calibrate. However, major source of inaccuracy in this method comes from the value of work function used which is very much sensitive to the fine-structure details of the junction [69] and also the local environment [70].

Figure 7
figure 7

(a) Conductance traces of gold atomic junction where conductance is presented in terms of piezovoltage (Vpiezo). Region used for calculating the calibration constant is marked by the black dash line. (b) Histogram of the calculated calibration constant, obtained from 10,000 traces of clean gold junction. Red line plot is the Gaussian fitting which elicits the most possible calibration constant ~ 0.053 Å/\(\mathrm{mV}\).

Appendix B: Gold atomic junction at higher conducting configuration

See figure 8.

Figure 8
figure 8

One-dimensional conductance histogram of the gold atomic junction till conductance value upto 20G0, constructed from the same 10,000 traces used in figure 4, using 200 bins. High conductance peaks can be resolved even upto ~ 20G0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pabi, B., Pal, A.N. An experimental set-up to probe the quantum transport through a single atomic\(/\)molecular junction at room temperature. Pramana - J Phys 97, 8 (2023). https://doi.org/10.1007/s12043-022-02489-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02489-7

Keywords

PACS Nos

Navigation