Skip to main content
Log in

Spin–orbit splitting of protons and neutrons

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Within the framework of Yukawa-plus-exponential macroscopic model, the binding energies of magic nuclei and nuclei which are adjacent to them, are calculated using volume energy coefficient \(a_V\) and surface energy coefficient \(a_S\) as fitting parameters. Single-particle energies (SPE) are deduced for both protons and neutrons using binding energies of the core and core ± nucleon. Spin–orbit splitting of protons and neutrons are computed from the single-particle energies of protons and neutrons and compared with other literature values. SPEs calculated for the nuclei show gap for the usual proton and neutron magic numbers and new magic numbers \(Z, N = 14\) and 16. In superheavy region, a gap is noted in SPE for the proton numbers 92, 114 and neutron numbers 164 and 184. Further, the reduced spin–orbit splitting of protons and neutrons are found to possess a linear dependence on \(A^{-2/3}\) and directly proportional to (\(\ell +1/2\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M G Mayer, Phys. Rev. 75, 1969 (1949)

    Article  ADS  Google Scholar 

  2. M G Mayer, Phys. Rev. 78, 16 (1950)

    Article  ADS  Google Scholar 

  3. Otto Haxel, J Hans D Jensen and Hans E Suess, Phys. Rev. 75, 1766 (1949)

    Article  Google Scholar 

  4. Otto Haxel, J H D Jensen and Hans E Suess, Z. Phys. 128, 295 (1950)

    Article  ADS  Google Scholar 

  5. O Sorlin and M-G Porquet, Progr. Part. Nucl. Phys. 61, 602 (2008)

    Article  ADS  Google Scholar 

  6. G Mairle, Phys. Lett. B 304, 39 (1993)

    Article  ADS  Google Scholar 

  7. V I Isakov, K I Erokhina, H Mach, M Sanchez-Vega and B Fogelberg, Eur. Phys. J. A 14, 29 (2002)

    ADS  Google Scholar 

  8. V I Isakov, K I Erokhina, B Fogelberg, H Mach and M Sanchez-Vega, Phys. At. Nucl. 67, 1823 (2004)

    Article  Google Scholar 

  9. R Orlandi, S D Pain, S Ahn, A Jungclaus, K T Schmitt, D W Bardayan, W N Catford, R Chapman, K A Chipps, J A Cizewski, C G Cross, M E Howard, K L Jones, R L Kozub, B Manning, M Matos, K Nishio, P D O’ Malley, W A Peters, S T Pittman, A Ratkiewicz, C Shand, J F Smith, M S Smith, T Fukui, J A Tostevin and Y Utsuno, Phys. Lett. B 785, 615 (2018)

  10. J P Schiffer, S J Freeman, J A Caggiano, C Deibel, A Heinz, C-L Jiang, R Lewis, A Parikh, P D Parker, K E Rehm, S Sinha and J S Thomas, Phys. Rev. Lett. 92, 162501 (2004)

    Article  ADS  Google Scholar 

  11. M Zalewski, J Dobaczewski, W Satuła and T R Werner, Phys. Rev. C 77, 024316 (2008)

    Article  ADS  Google Scholar 

  12. P W Zhao, Z P Li, J M Yao and J Meng, Phys. Rev. C 82, 054319 (2010)

    Article  ADS  Google Scholar 

  13. J Fridmann, I Wiedenhöver, A Gade, L T Baby, D Bazin, B A Brown, C M Campbell, J M Cook, P D Cottle, E Diffenderfer, D-C Dinca, T Glasmacher, P G Hansen, K W Kemper, J L Lecouey, W F Mueller, H Olliver, E Rodriguez-Vieitez, J R Terry, J A Tostevin and K Yoneda, Nature 435, 922 (2005)

    Article  ADS  Google Scholar 

  14. Robert V F Janssens, Nature 435, 897 (2005)

  15. A Ozawa, T Kobayashi, T Suzuki, K Yoshida and I Tanihata, Phys. Rev. Lett. 84, 5493 (2000)

    Article  ADS  Google Scholar 

  16. C Samanta and S Adhikari, Phys. Rev. C 65, 037301 (2002)

    Article  ADS  Google Scholar 

  17. P Hoff, P Baumann, A Huck, A Knipper, G Walter, G Margurier, B Fogelberg, A Lindroth, H Mach, M Sanchez-Vega, R B E Taylor, P Van Duppen, A Jokinen, M Lindroos, M Ramdhane, W Kurcewicz, B Jonson, G Nyman, Y Jading, K -L Kratz, A Wöhr, G Løvhøiden, T F Thorsteinsen, J Blomqvist and ISLODE Colloboration Phys. Rev. Lett. 77, 1020 (1996)

  18. M Sanchez-Vega, B Fogelberg, H Mach, R B E Taylor and A Lindroth, Phys. Rev. Lett. 80, 5504 (1998)

    Article  ADS  Google Scholar 

  19. V I Isakov, Phys. At. Nucl. 67, 911 (2004)

    Article  Google Scholar 

  20. V I Isakov, K A Mezilev, K I Erokhina, B Fogelberg, H Mach and E Ramström, Eur. Phys. J. A 20, 397 (2004)

    Article  ADS  Google Scholar 

  21. H J Krappe, Phys. Rev. C 59, 2640 (1999)

    Article  ADS  Google Scholar 

  22. P Möller and J R Nix, At. Data Nucl. Data Tables 39, 213 (1988)

    Article  ADS  Google Scholar 

  23. Meng Wang, W J Huang, F G Kondev, G Audi and S Naimi, Chin. Phys. C 45, 030003 (2021)

  24. P Möller, A J Sierk, T Ichikawa and H Sagawa, At. Data Nucl. Data Tables 109–110, 1 (2016)

  25. A Bohr and B R Mottelson, in Nuclear structure edited by W A Benjamin (World Scientific, Singapore, 1969) Vol. 1, p. 210

  26. Hiroyuki Koura and Satoshi Chiba, J. Phys. Soc. Jpn. 82, 014201 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N S Rajeswari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehana, P., Rajeswari, N.S. Spin–orbit splitting of protons and neutrons. Pramana - J Phys 97, 32 (2023). https://doi.org/10.1007/s12043-022-02488-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02488-8

Keywords

PACS Nos

Navigation