Skip to main content
Log in

An accurate empirical formula for the average total kinetic energy released in fission

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The empirical formulae for an average total kinetic energy released during the symmetric and asymmetric fission has been estimated by considering the recently available experimental data. An empirical formulae is deduced by the systematic variation of \(\langle E_{K}\rangle \) with \(Z^{2}/A^{1/3}\). The least-square analysis of symmetric fission yields \(\langle {E_K}\rangle =0.12014({Z^2}/{A^{1/3}})+5.99\) MeV in the atomic number range \(23\le Z\le 120\) and mass number range \(46\le A\le 302\), whereas asymmetric fission yields \(\langle {E_K}\rangle =0.1367({Z^2}/{A^{1/3}})-18.94\) MeV in the atomic number range \(78\le Z\le 102\) and mass number range \(178 \le A \le 258\). The root mean square error (RMSE) values are smaller than the previous systematics. The covariance of matrix and its parameters are evaluated both in symmetric and asymmetric fission of the nuclei along with the error band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N Bohr, Phys. Rev. 56(5), 426 (1939)

    Article  ADS  Google Scholar 

  2. S Frankel and N Metropolis, Phys. Rev. 72(10), 914 (1947)

    Article  ADS  Google Scholar 

  3. J Terrell, Phys. Rev. 113(2), 527 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  4. V E Viola and T Sikkeland, Phys. Rev. 130(5), 2044 (1963)

    Article  ADS  Google Scholar 

  5. H C Britt, H E Wegner and J Gursky, Phys. Rev. Lett. 8(3), 98 (1962)

    Article  ADS  Google Scholar 

  6. V E Viola, Nuclear Data Sheets A 1, 391 (1965)

    Article  ADS  Google Scholar 

  7. M L Walker and V E Viola, Indiana Nuclear Chemistry Report INC-40007-6 (1981)

  8. V E Viola, K Kwiatkowski and M Walker, Phys. Rev. C 31(4), 1550 (1985)

    Article  ADS  Google Scholar 

  9. Y L Zhao, H Nakahara, K Sueki, Y Nagame and I Nishinaka, Advanced Science Research Center, Japan Atomic Energy Research Institute (2000)

    Google Scholar 

  10. O A P Tavares and M L Terranova, Il Nuovo Cimento A (1965–1970) 105(4), 723 (1992)

  11. M G Itkis, E Vardaci, I M Itkis, G N Knyazheva and E M Kozulin, Nucl. Phys. A 944, 202 (2015)

    Article  ADS  Google Scholar 

  12. S J Sanders, A S De Toledo and C Beck Christian, Phys. Rep. 311(6), 487 (1999)

    Article  ADS  Google Scholar 

  13. V Liberati et al, Phys. Rev. C. 88(4), 044322 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. M D Usang, F A Ivanyuk, C Ishizuka and S Chiba, Sci. Rep. 9(1), 1 (2019)

  15. M Usang, F Ivanyuk, C Ishizuka and S Chiba, EPJ Web Conf. 146, 04025 (2017)

    Article  Google Scholar 

  16. S Chiba, M D Usang, C Ishizuka, F Ivanyuk and Z Xuan, EPJ Web Conf. 242, 03004 (2020)

    Article  Google Scholar 

  17. K Shimada, C Ishizuka, F A Ivanyuk and S Chiba, Phys. Rev. C 104(5), 054609 (2021)

    Article  ADS  Google Scholar 

  18. H C Manjunatha, A M Nagaraja, N Sowmya and K N Sridhar, Indian J. Phys. 96, 1237 (2022)

    Article  ADS  Google Scholar 

  19. H C Manjunatha, K N Sridhar, N Nagaraja and N Sowmya, The Eur. Phys. J. Plus 133(6), 1 (2018)

    Article  Google Scholar 

  20. H C Manjunatha, L Seenappa, N Sowmya, K N Sridhar and B M Chandrika, Mod. Phys. Lett. A 35(34), 2050285 (2020)

    Article  ADS  Google Scholar 

  21. X Zhang, Z Ren, Q Zhi and Q Zheng, J. Phys. G: Nucl. Part. Phys. 34(12), 2611 (2007)

    Article  ADS  Google Scholar 

  22. S Zong-Qiang, S Liang-Ping, M Ying, H Ji-Gang and Q Jian-Fa, Chin. Phys. C 38(12), 124101 (2014)

    Article  ADS  Google Scholar 

  23. H C Manjunatha and N Sowmya, Pramana – J. Phys. 90(5), 1 (2018)

  24. S Chiba, M D Usang, C Ishizuka, F Ivanyuk and Z Xuan, AIP Conf. Proc. 2319(1), 080015 (2021)

    Google Scholar 

  25. A Andreyev et al, Phys. Rev. C 87, 014317 (2013)

    Article  ADS  Google Scholar 

  26. B B Back, J. Phys.: Conf. Ser. 282, 012003 (2011)

    Google Scholar 

  27. V E Viola and G T Seaborg, J. Inorg. Nucl. Chem. 28(3), 697 (1966)

    Article  Google Scholar 

  28. J R Nix and A J Sierk, Nucl. Phys. A 428, 161 (1984)

    Article  ADS  Google Scholar 

  29. M R Lane et al, Phys. Rev. C. 53(6), 2893 (1996)

    Article  ADS  Google Scholar 

  30. S D Beizin, S V Zhdanov, M G Itkis, V N Okolovich, G N Smirenkin and M I Subbotin, Sov. J. Nucl. Phys. (English Translation) 53(3), 411 (1991)

  31. M G Itkis, V N Okolovich and A Ya, Z. Phys. A 320, 433 (1985)

  32. I Nishinaka, Y Nagame, K Tsukada, H Ikezoe, K Sueki, H Nakahara, M Tanikawa and T Ohtsuki, Phys. Rev. C 56(2), 891 (1997)

    Article  ADS  Google Scholar 

  33. P M Kaldiani, Phys. Rev. C 102(4), 044612 (2020)

    Article  ADS  Google Scholar 

  34. C E Bemis et al, Phys. Rev. C 15(2), (1977)

  35. J P Unik, J E Gindler, L E Glendenin, K F Flynn, A Gorski and R K Sjoblom, Physics and chemistry of fission (1973)

  36. D C Hoffman et al, Phys. Rev. C 21(3), 972 (1980)

    Article  ADS  Google Scholar 

  37. J F Wild et al, J. Alloys Compd 213, 86 (1994)

    Article  ADS  Google Scholar 

  38. J Elseviers et al, Phys. Rev. C 88(4), 044321 (2013)

    Article  ADS  Google Scholar 

  39. M D Usang, F Ivanyuk, C Ishizuka and S Chiba, Energy Proc. 131, 299 (2017)

    Article  Google Scholar 

  40. A N Andreyev et al, Phys. Rev. C 87(1), 014317 (2013)

    Article  ADS  Google Scholar 

  41. J P Unik and J E Gindler, https://www.osti.gov/ biblio/4010075 (1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H C Manjunatha or N Sowmya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, H.C., Sowmya, N., Sridhar, K.N. et al. An accurate empirical formula for the average total kinetic energy released in fission. Pramana - J Phys 97, 12 (2023). https://doi.org/10.1007/s12043-022-02485-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02485-x

Keywords

PACS Nos

Navigation