Skip to main content
Log in

Analytical investigation on the Autler–Townes splittings and the two-photon effects in a Doppler free signal lineshape of a double-\(\varvec{\lambda }\) type four-level system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

By exploiting the pump–probe (signal) spectroscopy, the analytical expressions for the signal lineshapes of a four-level double-\(\lambda \) type system is obtained by solving the steady-state optical Bloch equations. By varying the pump frequencies (positions), the signal lineshapes are investigated as the function of signal detuning. The Autler–Townes effects and hence the ac-Stark splitting of the energy levels are exhibited when the pump is in on-resonance position. On the other hand, the off-resonance pump leads to the two-photon absorption and the shifts of the signal resonance peak positions. The analytical expressions for the imaginary part of the signal polarisation and hence the absorption lineshapes are certainly useful for investigating various situations involving the pump intensity, decay time of energy levels and the spacing between the closely spaced levels. A few symbolic calculations involving the analytical expressions of the signal polarisation are provided to have the physical realisation. The data used for these calculations are partly theoretical in nature and are compatible with the real experiment. We neglect the Doppler effects and a semiclassical formalism of atom–field interaction is adopted throughout the investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G K Woodgate, Elementary atomic structure (Oxford Univ. Press, New York, 1983)

    Google Scholar 

  2. C C Gerry and P L Knight, Introductory quantum optics (Cambridge Univ. Press, New York, 2005)

    Google Scholar 

  3. E T Jaynes and F W Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  4. L Allen and J H Eberly, Optical resonance and two level atoms (John-Wiley and Sons, New York, 1975)

    Google Scholar 

  5. R Loudon, The quantum theory of light (Oxford Science Publication, Oxford, 1973)

    MATH  Google Scholar 

  6. R W Boyd, Nonlinear optics, 4th Edn (Academic Press, Cambridge, 2020)

    Google Scholar 

  7. J D Jackson, Classical electrodynamics, 3rd Edn (Wiley, New York, 1998)

    MATH  Google Scholar 

  8. D Braunstein and R Shuker, Phys. Rev. A 64, 053812 (2001)

    Article  ADS  Google Scholar 

  9. S Y Zhu, L M Narducci and M O Scully, Phys. Rev. A 52, 4791 (1995)

    Article  ADS  Google Scholar 

  10. M O Scully, Phys. Rev. Lett. 67, 1855 (1991)

    Article  ADS  Google Scholar 

  11. A K Patnaik, R Ooi, Y Rostovtsev and M Scully, Physica E 29, 111 (2005)

    Article  ADS  Google Scholar 

  12. K I Osman, S S Hassan and A Joshi, Opt. Commun. 278, 114 (2007)

    Article  ADS  Google Scholar 

  13. L J Wang, A Kuzmich and A Dogariu, Nature 406, 277 (2000)

    Article  ADS  Google Scholar 

  14. K-J Boiler, A Imamoglu and S E Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  15. M Fleischhauer and M D Lukin, Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  16. A B Matsko, O Kocharovskaya, Y Rostovtsev, G R Welch, A S Zibrov and M O Scully, Adv. At. Mol. Opt. Phys. 46, 191 (2001)

    Article  ADS  Google Scholar 

  17. M Fleischhauer, S F Yelin and M D Lukin, Opt. Commun. 129, 395 (2000)

    Article  ADS  Google Scholar 

  18. M O Scully, C J Bednar, Y Rostovtsev and S-Y Zhu, Phil. Trans. R. Soc. Lond. A 355, 2305 (1997)

    Article  ADS  Google Scholar 

  19. K G Lagoudakis, K A Fischer, T Sarmiento, P L McMohan, M Radulaski, J L Zhang, Y Kelaita, C Dory, K Muller and J Vuckovic, Phys. Rev. Lett. 118, 013602 (2017)

    Article  ADS  Google Scholar 

  20. Z Lu et al, Sci. Rep. 7, 8010 (2017)

    Article  ADS  Google Scholar 

  21. A Raczynski and J Zaremba, Opt. Commun. 209, 149(2002)

    Article  ADS  Google Scholar 

  22. X Xu, S Shen and Y Xiao, Opt. Express 21, 11705 (2013)

    Article  ADS  Google Scholar 

  23. M Fleischhauer, A Imamoglu and J P Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  24. M Kora and S Mandal, Chem. Phys. Lett. 720, 136955 (2020)

    Article  Google Scholar 

  25. S Ghosh and S Mandal, Phys. Rev. A70,023407 (2004)

    Article  ADS  Google Scholar 

  26. S Mandal and P N Ghosh, Phys. Rev. A 47, 4934 (2003)

    Article  ADS  Google Scholar 

  27. M Kora and S Mandal, Euro. Phys. J Plus 137, 17 (2022)

    Article  ADS  Google Scholar 

  28. S H Autler and C H Townes, Phys. Rev. 100, 703 (1955)

    Article  ADS  Google Scholar 

  29. C Cohen-Tannoudji and S Reynaud, J. Phys. B: At. Mol. Phys. 10, 365 (1977)

    Article  ADS  Google Scholar 

  30. I Haque and M R Singh, J. Phys. Cond. Matter 19, 156229 (2007)

    Article  ADS  Google Scholar 

  31. M R Singh, Phys. Lett. A 372, 5083 (2008)

    Article  ADS  Google Scholar 

  32. M R Singh, P D Persaud and S Yastrebov, Nanotechnol. 31, 265203 (2020)

    Article  ADS  Google Scholar 

  33. M R Singh and P D Persaud, J. Phys. Chem. C 124, 6311 (2020)

    Article  Google Scholar 

  34. M R Singh, J. Phys. B: At. Mol. Opt. Phys. 40, 675 (2007)

    Article  Google Scholar 

  35. M R Singh, Phys. Rev. B 75, 155427 (2007)

  36. A Javan, Phys. Rev. 107, 1579 (1957)

    Article  ADS  Google Scholar 

  37. J H Eberly, Phil. Trans. R. Soc. Lond. A 355, 2387 (1997)

    Article  ADS  Google Scholar 

  38. C H Keitel, O A Kocharovskaya, L M Narducci, M O Scully, S-Y Zhu and H M Doss, Phys. Rev. A 48, 3196 (1993)

    Article  ADS  Google Scholar 

  39. D A Steck, https://steck.us/alkalidata/cesiumnumbers.1.6.pdf (1998)

  40. S Stenholm, Foundations of laser spectroscopy (John Wiley, New York, 1983)

    Google Scholar 

  41. M A Hafiz, G Coget, E de Clercq and R Boudot, Opt. Lett. 41, 2982 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (MK) thanks the University Grants Commission (UGC), Government of India for financial support through the National Fellowship for Higher Education (F1-17.1/2016-17/NFST-2015-17-ST-WES-878/(SA-III/Website).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kora, M., Mandal, S. Analytical investigation on the Autler–Townes splittings and the two-photon effects in a Doppler free signal lineshape of a double-\(\varvec{\lambda }\) type four-level system. Pramana - J Phys 97, 4 (2023). https://doi.org/10.1007/s12043-022-02481-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02481-1

Keywords

PACS Nos

Navigation