Skip to main content
Log in

Lie symmetry analysis and exact solution of \((2+1)\)-dimensional nonlinear time-fractional differential-difference equations

  • Research paper
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The invariant analysis of time-fractional nonlinear differential-difference equations and determination of their exact solutions using the Lie symmetry method is not discussed in the literature. In this paper, we present a systematic method to derive Lie point symmetries to nonlinear time-fractional differential-difference equations and illustrate its applicability through the physically important class of (\(2+1\))-dimensional time-fractional Toda lattice equations with Riemann–Liouville fractional derivative. We have shown the similarity reduction of the time-fractional nonlinear partial differential-difference equation into nonlinear fractional ordinary differential-difference equation in Erdélyi-Kober fractional derivative with a new independent variable. We derive their new exact solutions wherever possible utilising the Lie point symmetries. Our study reveals that the (\(2+1\))-dimensional nonlinear time-fractional Toda lattice equations admit the infinite-dimensional symmetry algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Toda, Theory of nonlinear lattices (Springer Science and Business Media, 2012)

  2. S Samko, A A Kilbas and O Marichev, Fractional integrals and derivatives: Theory and applications (Gordon and Breach Science, Switzerland, 1993)

    MATH  Google Scholar 

  3. V Kiryakova, Generalised fractional calculus and applications (Longman Scientific and Technical, England, 1994)

    MATH  Google Scholar 

  4. T Bakkyaraj and R Sahadevan, Nonlinear Dyn. 80, 447 (2015)

    Article  Google Scholar 

  5. R K Gazizov, A A Kasatkin and S Y Lukashchuk, Vestnik USATU 9, 21 (2007) (in Russian)

  6. R K Gazizov, A A Kasatkin and S Y Lukashchuk, Ufa Math. J. 4, 54 (2012)

    MathSciNet  Google Scholar 

  7. R K Gazizov, A A Kasatkin and S Y Lukashchuk, Phys. Scr. T136, 014016 (2009)

    Article  ADS  Google Scholar 

  8. T Bakkyaraj, Eur. J. Phys. Plus 135, 26 (2020)

    Article  Google Scholar 

  9. R Sahadevan and P Prakash, Nonlinear Dyn. 85, 659 (2016)

    Article  Google Scholar 

  10. P Prakash, Pramana – J. Phys. 94, 103 (2020)

    Article  Google Scholar 

  11. L V Ovsiannikov, Group analysis of differential equations (Academic Press, New York, 1982)

    MATH  Google Scholar 

  12. P J Olver, Applications of Lie groups to differential equations (Springer-Verlag, Heidelberg, 1986)

    Book  MATH  Google Scholar 

  13. P E Hydon, Symmetry methods for differential equations (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  14. G W Bluman and S Anco, Symmetry and integration methods for differential equations (Springer-Verlag, Heidelburg, 2002)

    MATH  Google Scholar 

  15. R Floreanini and L Vinet, J. Math. Phys. 36, 7024 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  16. S Maeda, Math. Japon 25, 405 (1980)

    Google Scholar 

  17. D Levi and P Winternitz, Phys. Lett. A 152, 335 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. D Levi and P Winternitz, J. Math. Phys. 34, 3713 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  19. G Quispel, H Capel and R Sahadevan, Phys. Lett. A 170, 379 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. G C Wu and T C Xia, Chaos Solitons Fractals 39, 2245 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. S F Tian, T T Zhang, P L Ma and X Y Zhang, J. Nonlinear Math. Phys. 22, 180 (2015)

    Article  MathSciNet  Google Scholar 

  22. Q Ding and S F Tian, Rep. Math. Phys. 74, 323 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. R Sahadevan and T Bakkyaraj, Fract. Calc. Appl. Anal. 18, 146 (2015)

    Article  MathSciNet  Google Scholar 

  24. K Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type (Springer, Heidelberg, 2010)

    Book  MATH  Google Scholar 

  25. R Sahadevan and P Prakash, Chaos Solitons Fractals 104, 107 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. R Sahadevan and T Bakkyaraj, J. Math. Anal. Appl. 393, 341 (2012)

    Article  MathSciNet  Google Scholar 

  27. Z Y Zhang, Proc. R. Soc. A 476 (2020)

  28. V G Kac, Infinite-dimensional Lie algebras (Cambridge University Press, 1990)

  29. C Wang and H Fang, Optik 144, 54 (2017)

    Article  ADS  Google Scholar 

  30. M Senthil Velan and M Lakshmanan, J. Nonlinear Math. Phys. 5, 190 (1998)

  31. D Hernandez, An introduction to affine Kac-Moody algebras, Lecture notes from CTQM Master Class (Aarhus University, Denmark, 2006)

  32. F Gungor, Symmetry Integer. Geom.: Methods Appl. 2, 014 (2006)

  33. P Goddard and D Olive, Int. J. Mod. Phys A 1, 303 (1986)

    Article  ADS  Google Scholar 

  34. E Buckwar and Y Luchko, J. Math. Anal. Appl. 227, 81 (1998)

    Article  MathSciNet  Google Scholar 

  35. T Bakkyaraj and R Sahadevan, Pramana – J. Phys. 85, 849 (2015)

    Article  Google Scholar 

  36. S S Feng, P Z Liang and Z Jun, Commun. Theor. Phys. 42, 805 (2004)

    Article  ADS  Google Scholar 

  37. S Shen, J. Phys. A Math. 40, 1775 (2007)

    ADS  Google Scholar 

  38. S Zhu, Phys. Lett. A 372, 654 (2008)

  39. G W Bluman and S Kumei, Eur. J. Appl. Math. 1, 189 (1990)

    Article  Google Scholar 

  40. D Levi and C Scimiterna, J. Phys. A: Math. Theor. 46, 325204 (2013)

    Article  Google Scholar 

  41. V B Matveev and M A Salle, Lett. Math. Phys. 3, 425 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  42. F W Nijhoff, G R W Quispel and H W Capel, Phys. Lett. A 95, 273 (1983)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Bakkyaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakkyaraj, T., Thomas, R. Lie symmetry analysis and exact solution of \((2+1)\)-dimensional nonlinear time-fractional differential-difference equations. Pramana - J Phys 96, 225 (2022). https://doi.org/10.1007/s12043-022-02469-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02469-x

Keywords

PACS Nos

Navigation