Skip to main content
Log in

On the time-scale of quasifission and Coulomb fission

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The Coulomb fission may take place in a reaction if the maximum Coulomb excitation energy transfer exceeds the fission barrier of either the projectile or the target nucleus. This condition is satisfied in all the reactions used for the earlier blocking measurements of fission time-scale except for the reaction \(^{208}\hbox {Pb}~+\) natural Ge crystal, where the time-scale is below the measurement limit of the blocking technique \(<1\) as. Inclusion of Coulomb fission in the data analysis of the blocking experiments leads us to interpret the measured time-scales longer than a few attoseconds (as) (about 1–2.2 as) due to slow Coulomb fission and those shorter than 1 as, as due to quasifission and fast Coulomb fission. Consequently, this finding resolves the critical discrepancies between the fission time-scales measured using the nuclear and blocking techniques. This, in turn, validates the fact that the quasifission and fast Coulomb fission time-scales are indeed of the order of zeptosecond (zs) in accordance with the nuclear experiments and theories. The present results thus provide an essential input to the understanding of the fusion evaporation reaction during the formation of heavy elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W Nazarewicz, Nat. Phys. 14(6), 537 (2018)

    Article  Google Scholar 

  2. C E Dullmann, EPJ Web of Conferences 131, 08004 (2016)

    Article  Google Scholar 

  3. Y T Oganessian et alPhys. Rev. C 79(2), 024603 (2009)

    Article  ADS  Google Scholar 

  4. S Hofmann, J. Phys. G 42(11), 114001 (2015)

    Article  ADS  Google Scholar 

  5. J H Hamilton, S Hofmann and Y T Oganessian, Annu. Rev. Nucl. Part. 63, 383 (2013)

    Article  ADS  Google Scholar 

  6. Y T Oganessian and V K Utyonkov, Rep. Prog. Phys. 78(3), 036301 (2015)

  7. W U Schoder and J R Huizenga, Treatise on heavy-ion science (Springer, 1984) pp. 113–726

  8. J Toke et alNucl. Phys. A 440(2), 327 (1985)

    Article  ADS  Google Scholar 

  9. W Q Shen et alPhys. Rev. C 36(1), 115 (1987)

    Article  ADS  Google Scholar 

  10. D J Hinde, D Hilscher and H Rossner, Phys. Rev. C 45(3), 1229 (1992)

    Article  ADS  Google Scholar 

  11. J Nestler et alPhys. Rev. C 51(4), 2218 (1995)

    Article  ADS  Google Scholar 

  12. J Velkovska et alPhys. Rev. C 59(3), 1506 (1999)

    Article  ADS  Google Scholar 

  13. H W Wilschut and V L Kravchuk, Nucl. Phys A 734, 156 (2004)

    Article  ADS  Google Scholar 

  14. F Goldenbaum et alPhys. Rev. Lett. 82(25), 5012 (1999)

    Article  ADS  Google Scholar 

  15. J U Andersen et alPhys. Rev. Lett. 99(16), 162502 (2007)

    Article  ADS  Google Scholar 

  16. J U Andersen et alPhys. Rev. C 78(6), 064609 (2008)

    Article  ADS  Google Scholar 

  17. M Morjean et alPhys. Rev. Lett. 101(7), 072701 (2008)

    Article  ADS  Google Scholar 

  18. K Ramachandran et alPhys. Rev. C 73(6), 064609 (2006)

    Article  ADS  Google Scholar 

  19. R du Rierz et alPhys. Rev. Lett. 106(5), 052701 (2011)

    Article  ADS  Google Scholar 

  20. M O Fregeau et alPhys. Rev. Lett. 108(12), 122701 (2012)

    Article  ADS  Google Scholar 

  21. K Siwek-Wilczyska, J Wiczynski, R H Siemssen and H W Wilschut, Phys. Rev. C 51(4), 2054 (1995)

    Article  ADS  Google Scholar 

  22. J Wilczynski, K Siwek-Wilczynska and H W Wilschut, Phys. Rev. C 54(1), 325 (1996)

    Article  ADS  Google Scholar 

  23. A Diaz-Torres, Phys. Rev. C 69, 021603 (2004)

    Article  ADS  Google Scholar 

  24. V Zagrebaev and W Greiner, J Phys. Nucl. Part. Phys. 31(7), 825 (2005)

    Article  ADS  Google Scholar 

  25. K P Santhosh and V Safoora, Phys. Rev. C 96(3), 034610 (2017)

    Article  ADS  Google Scholar 

  26. H C Manjunatha and K N Sridhar, Nucl. Phys. A 962, 7 (2017)

    Article  ADS  Google Scholar 

  27. H C Manjunatha and K N Sridhar, Eur. Phys. J. A 53(5), 1 (2017)

    Article  Google Scholar 

  28. K N Sridhar, H C Manjunatha and H B Ramalingam, Phys. Rev. C 98(6), 064605 (2018)

    Article  ADS  Google Scholar 

  29. H C Manjunatha, K N Sridhar and N Sowmya, Phys. Rev. C 98(2), 024308 (2018)

    Article  ADS  Google Scholar 

  30. K N Sridhar, H C Manjunatha and H B Ramalingam, Nucl. Phys. A 983, 195 (2019)

    Article  ADS  Google Scholar 

  31. H C Manjunatha, K N Sridhar and N Sowmya, Nucl. Phys. A 987, 382 (2019)

  32. A Dobrowolski, B Nerlo-Pomorska, K Pomorski and J Bartel, Acta Phys. Pol. B 40(3), 705 (2009)

    ADS  Google Scholar 

  33. H C Manjunatha, Indian J. Phys. 92(4), 507 (2018)

    Article  ADS  Google Scholar 

  34. A K Sikdar, A Ray and A Chatterjee, Phys. Rev. C 93(4), 041604 (2016)

    Article  ADS  Google Scholar 

  35. V E Oberacker, W T Pinkston and H G Kruse, Rep. Prog. Phys. 48(3), 327 (1985)

    Article  ADS  Google Scholar 

  36. K Alder, A Bohr, T Huus, B Mottelson and A Winther, Rev. Mod. Phys. 28(4), 432 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  37. L Wilets, E Guth and J S Tenn, Phys. Rev. 154(4), 1349 (1967)

    Article  ADS  Google Scholar 

  38. H Backe et alPhys. Rev. Lett. 43(15), 1077 (1979)

    Article  ADS  Google Scholar 

  39. K H Schmidt et alPhys. Lett. B 325(3), 313 (1994)

    Article  ADS  Google Scholar 

  40. T Aumann et alZ. Phys. A 352, 163 (1995)

    Article  ADS  Google Scholar 

  41. C Bockstiegel et alPhys. Lett. B 398(3), 259 (1997)

    Article  ADS  Google Scholar 

  42. K H Schmidt et alNucl. Phys. A 665(3), 221 (2000)

    Article  ADS  Google Scholar 

  43. E Piasecki et alPhys. Lett. B 377(4), 235 (1996)

    Article  ADS  Google Scholar 

  44. A Bonaccorso, Z Zelazny and E Piasecki, Z. Phys. Hadr. Nucl. 358(3), 329 (1997)

    Article  Google Scholar 

  45. D S Gemmell and R E Holland, Phys. Rev. Lett. 14(23), 945 (1965)

    Article  ADS  Google Scholar 

  46. M Morjean et alEur. Phys. J. D 45(1), 27 (2007)

    Article  ADS  Google Scholar 

  47. V Nanal, M B Kurup and K G Prasad, Phys. Rev. C 49(2), 758 (1994)

    Article  ADS  Google Scholar 

  48. A Bertulani, A Carlos and V Y Ponomarev,  Phys. Rep. 321(4), 139 (1999)

    Article  ADS  Google Scholar 

  49. G Giardina, S Hofmann, A I Muminov and A K Nasirov, Eurp. Phys. J. A 8(2), 205 (2000)

    Article  ADS  Google Scholar 

  50. J D Jackson, Can. J. Phys. 34(8), 767 (1956)

    Article  ADS  Google Scholar 

  51. R Vandenbosch, Nuclear fission (Elsevier, 2012)

  52. T Nandi et alPramana – J. Phys. 96, 1 (2022)

    Article  ADS  Google Scholar 

  53. H Wollersheim, Acta Phys. Polon. B 42, (2011)

  54. https://www.nndc.bnl.gov/ensdf/.

  55. P R Christensen and A Winther, Phys. Lett. B 65(1), 19 (1976)

    Article  ADS  Google Scholar 

  56. W W Wilcke et alAt. Data Nucl. Data 25(5), 389 (1980)

    Article  ADS  Google Scholar 

  57. C A Bertulani and G Baur, Phys. Rep. 164(5), 299 (1988)

    Article  ADS  Google Scholar 

  58. P Grange and H A Weidenmüller, Phys. Lett. B 96(1), 26 (1980)

    Article  ADS  Google Scholar 

  59. O B Tarasov and D Bazin, Nucl. Instrum. Methods Phys. Res. B 376, 185 (2016)

    Article  ADS  Google Scholar 

  60. H C Manjunatha, L Seenappa, P S Damodara Gupta, N Manjunatha, K N Sridhara, N Sowmya and T Nandi, Phys. Rev. C 103(2), 024311 (2021)

  61. S Soheyli, M Khanlari and Varasteh, Phys. Rev. C 94(3), 034615 (2016)

  62. M V Khanlari and S Soheyli, Phys. Rev. C 95(2), 024617 (2017)

    Article  ADS  Google Scholar 

  63. A J Sierk, Phys. Rev. C 33(6), 2039 (1986)

    Article  ADS  Google Scholar 

  64. A Nasirov et alEur. Phys. J. A 49(11), 1 (2013)

    Article  Google Scholar 

  65. H C Manjunatha and K N Sridhar, Nucl. Phys. A 971, 83 (2018)

    Article  ADS  Google Scholar 

  66. W Reisdorf and M Schadel, Z. Phys. A: Hadrons Nucl. 343(1), 47 (1992)

    Article  Google Scholar 

  67. A K Nasirov et alEur. Phys. J. A 34(3), 325 (2007)

    Article  ADS  Google Scholar 

  68. J F Stephens, R M Diamond and I Perlman, Phys. Rev. Lett. 3(9), 435 (1959)

    Article  ADS  Google Scholar 

  69. T Czosnyka et alNucl. Phys. A 458(1), 123 (1986)

    Article  ADS  Google Scholar 

  70. C Y Wu, W V Oertzen, D Cline and M W Guidry, Annu. Rev. Nucl. Part. 40(1), 285 (1990)

    Article  ADS  Google Scholar 

  71. A Winther and J Boer, Technical Report (1965)

  72. I Stetcu, C A Bertulani, A Bulgac, P Magierski and K J Roche, Phys. Rev. Lett.  114(1), 012701 (2015)

    Article  ADS  Google Scholar 

  73. J Diaz-Cortes et alPhys. Lett. B 811, 135962 (2020)

    Article  Google Scholar 

  74. T Enqvist et alNucl. Phys. A 658(1), 47 (1999)

    Article  ADS  Google Scholar 

  75. S Cohen and W Swiatecki, Ann. Phys. 22(3), 406 (1963)

    Article  ADS  Google Scholar 

  76. C Wong, Phys. Rev. Lett. 31(12), 766 (1973)

    Article  ADS  Google Scholar 

  77. D S Gemmell, Rev. Mod. Phys.  46(1), 129 (1974)

    Article  ADS  Google Scholar 

  78. M Morjean et alEPJ Web of Conferences  63, 02011 (2013)

    Article  Google Scholar 

  79. I P Christov, R Bartels, H C Kapteyn and M M Murnane, Phys. Rev. Lett. 86(24), 5458 (2001)

    Article  ADS  Google Scholar 

  80. M T Kannan et alPhys. Rev. C 98(2), 021601 (2018)

    Article  ADS  Google Scholar 

  81. D J Hinde, M Dasgupta and A Mukherjee, Phys. Rev. Lett. 89(28), 282701 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to Prof. H J Wollersheim for stimulating discussions on the physics of the Coulomb excitation and calculation of the Coulomb excitation cross-sections using the Coulex code. We acknowledge useful discussion with Jhilam Sadhukhan and E Piasecki. They are highly grateful to Santanu Pal for thorough English correction to improve the readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Nandi or H C Manjunatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, T., Manjunatha, H.C., Gupta, P.S.D. et al. On the time-scale of quasifission and Coulomb fission. Pramana - J Phys 96, 230 (2022). https://doi.org/10.1007/s12043-022-02468-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02468-y

Keywords

PACS Nos

Navigation