Skip to main content
Log in

Numerical solutions of a time-dependent hydromagnetic micropolar dusty fluid between parallel plates through an inclined channel

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Numerical simulation of an incompressible micropolar dusty fluid (fluid–particle suspension) is proposed for three types of flows in the inclined channel, i.e., Poiseuille flow, Couette flow and the generalised Couette flow. Although the fluid flow is time-dependent, hydromagnetic and channel walls are parallel to each other. The governing coupled partial differential equations for the flow of non-Newtonian micropolar dusty fluid are formulated in a Cartesian coordinate system and simulated approximately using a modified cubic B-spline differential quadrature method. The effects of ion slip, Hall current, Reynolds number, micropolar material and other important hydrodynamic fluid parameters have been examined on unsteady flow velocity and microrotation characteristics. It is observed that the linear velocity of the fluid and particle rises from the horizontal to the vertical channel, fluids and particle velocities are reduced with increasing Hartmann numbers, whereas they are elevated with increment in the Hall parameter. Findings of the present model can be helpful in various industrial fluid flow applications, particularly in petroleum industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. A C Eringen, Int. J. Eng. Sci. 2, 205 (1964), doi: https://doi.org/10.1016/0020-7225(64)90005-9

    Article  Google Scholar 

  2. C K Chen, Y T Yang and K H Chang, Entropy 13, 1595 (2011), doi: https://doi.org/10.3390/e13091595.

    Article  ADS  Google Scholar 

  3. S K Pandey and D Tripathi, Z. Naturforsch. A: J. Phys. Sci. 66, 3 (2011), doi: https://doi.org/10.1515/zna-2011-3-407.

    Article  Google Scholar 

  4. F Shakeri Aski, S J Nasirkhani, E Mohammadian and A Asgari, Propuls. Power Res. 3, 15 (2014), doi: https://doi.org/10.1016/j.jppr.2014.01.004

  5. M A Abbas, N Faraz, Y Q Bai and Y Khan, J. King Saud University - Sci. 29, 126 (2017), doi: https://doi.org/10.1016/j.jksus.2015.05.004

    Article  Google Scholar 

  6. Aurangzaib, M Sharif Uddin, K Bhattacharyya and S Shafie, Propuls. Power Res. 5, 310 (2016), doi: https://doi.org/10.1016/j.jppr.2016.11.005

  7. M M Rashidi, M Ashraf, B Rostami, M T Rastegari and S Bashir, Therm. Sci. 20, 21 (2016), doi: https://doi.org/10.2298/TSCI130212096R

    Article  Google Scholar 

  8. P Aparna, N Pothanna, J V R Murthy and K Sreelatha, Alex. Eng. J. 56, 679 (2017), doi: https://doi.org/10.1016/j.aej.2017.01.018

    Article  Google Scholar 

  9. T Govinda Rao, J V Ramana Murthy and G S Bhaskara Rao, Sadhana 44, 66 (2019), doi: https://doi.org/10.1007/s12046-018-1004-x

  10. S K Pandey and S Chandra, J. King Saud Univ. - Sci. 32, 2939 (2020), doi: https://doi.org/10.1016/j.jksus.2020.07.016

    Article  Google Scholar 

  11. M A A Mahmoud, M A E Mahmoud and S E Waheed, Math. Probl. Eng. (2006), doi: https://doi.org/10.1155/MPE/2006/39392

    Article  Google Scholar 

  12. Reena Mittal and U S Rana, Appl. Math. Comput. 215, 2591 (2009), doi: https://doi.org/10.1016/j.amc.2009.08.063

  13. M S Alam, T Islam and M M Rahman, Int. J. Heat Technol. 33, 115 (2015), doi: https://doi.org/10.18280/ijht.330219

    Article  Google Scholar 

  14. S Ahmad, K Ali and M Ashraf, UPB Sci. Bull. Ser. D Mech. Eng. 78, 131 (2016)

    Google Scholar 

  15. S R Mishra, S Baag and D K Mohapatra, Eng. Sci. Technol. Int. J. 19, 1919 (2016), doi: https://doi.org/10.1016/j.jestch.2016.07.016

    Article  Google Scholar 

  16. K Ali, S Ahmad and M Ashraf, J. Theor. Appl. Mech. 54, 633 (2016), doi: https://doi.org/10.15632/jtam-pl.54.2.633

    Article  Google Scholar 

  17. S M Arifuzzaman, M F Uddin Mehedi, A Al-Mamun, P Biswas, M R Islam and M S Khan, Int. J. Heat Technol. 36, 936 (2018), doi: https://doi.org/10.18280/ijht.360321

  18. A Dasman, N S Arifin, A R M Kasim and N A Yacob, J. Phys. Conf. Ser. 1366, 012032 (2019), doi: https://doi.org/10.1088/1742-6596/1366/1/012032

    Article  Google Scholar 

  19. M Devakar and A Raje, J. Appl. Fluid Mech. 12, 603 (2019), doi: https://doi.org/10.29252/jafm.12.02.28548

    Article  Google Scholar 

  20. D Dey, Int. J. Math. Eng. Manag. Sci. 4, 387 (2019), doi: https://doi.org/10.33889/ijmems.2019.4.2-031

    Article  Google Scholar 

  21. L A Lund, Z Omar, I Khan, J Raza, E S M Sherif and A H Seikh, Symmetry (Basel). 12, 142 (2020), doi: https://doi.org/10.3390/sym12010142

    Article  ADS  Google Scholar 

  22. H Kaneez, J Alebraheem, A Elmoasry, R S Saif and M Nawaz, AIP Adv. 10, 045120 (2020), doi: https://doi.org/10.1063/5.0003042

    Article  ADS  Google Scholar 

  23. H A Nabwey and A Mahdy, Alex. Eng. J. 60, 1739 (2021), doi: https://doi.org/10.1016/j.aej.2020.11.023

    Article  Google Scholar 

  24. M Gnaneswara Reddy and M Ferdows, J. Therm. Anal. Calorim. 143, 3699 (2021), doi: https://doi.org/10.1007/s10973-020-09254-1

  25. D Dey and M Hazarika, Lat. Am. Appl. Res. 50, 209 (2020), doi: https://doi.org/10.52292/j.laar.2020.206

    Article  Google Scholar 

  26. A R Alharbi, M B Almatrafi and A R Seadawy, Int. J. Mod. Phys. B, 34, 2050289 (2020), doi: https://doi.org/10.1142/S0217979220502896

    Article  ADS  Google Scholar 

  27. M B Almatrafi, A R Alharbi and A R Seadawy, J. King Saud Univ. - Sci. 33, 101375 (2021), doi: https://doi.org/10.1016/j.jksus.2021.101375

    Article  Google Scholar 

  28. Y Sağlam Özkan, A R Seadawy and E Yaşar, J. Taibah Univ. Sci. 15, 666 (2021), doi: https://doi.org/10.1080/16583655.2021.1999053

  29. S T R Rizvi, A R Seadawy, I Ali, I Bibi and M Younis, Mod. Phys. Lett. B 34, 2050399 (2020), doi: https://doi.org/10.1142/S0217984920503996

    Article  ADS  Google Scholar 

  30. U Younas, A R Seadawy, M Younis and S T R Rizvi, Chin. J. Phys. 68, 348 (2020), doi: https://doi.org/10.1016/j.cjph.2020.09.021

    Article  Google Scholar 

  31. A R Seadawy and N Cheemaa, Mod. Phys. Lett. B 33, 195203 (2019), doi: https://doi.org/10.1142/S0217984919502038

    Article  Google Scholar 

  32. A R Seadawy and N Cheemaa, Phys. A: Stat. Mech. Appl. 529, 121330 (2019), doi: https://doi.org/10.1016/j.physa.2019.121330

    Article  Google Scholar 

  33. A R Seadawy, D Lu and M Iqbal, Pramana – J. Phys. 93, 10 (2019), doi: https://doi.org/10.1007/s12043-019-1771-x

    Article  ADS  Google Scholar 

  34. D Lu, A R Seadawy and M Iqbal, Results Phys. 11, 1161 (2018), doi: https://doi.org/10.1016/j.rinp.2018.11.014

    Article  ADS  Google Scholar 

  35. R Katta, R K Chandrawat and V Joshi, J. Phys. Conf. Ser. 1531, 012090 (2020), doi: https://doi.org/10.1088/1742-6596/1531/1/012090

    Article  Google Scholar 

  36. R K Chandrawat, V Joshi and S Kanchan, Mater. Today Proc. 50, 1199 (2021), doi: https://doi.org/10.1016/j.matpr.2021.08.069

    Article  Google Scholar 

  37. H Du, M K Lim and R M Lin, Int. J. Numer. Methods Eng. 37, 1881 (1994), doi: https://doi.org/10.1002/nme.1620371107

    Article  Google Scholar 

  38. R K Chandrawat, V Joshi and O Anwar Bég, J. Nanofluids 10, 431 (2021), doi: https://doi.org/10.1166/jon.202

  39. T Y Wu and G R Liu, Comput. Mech. 24, 197 (1999), doi: https://doi.org/10.1007/s004660050452

    Article  MathSciNet  Google Scholar 

  40. R K Chandrawat, V Joshi, O Anwar Bég and D Tripathi, Heat Transf. 51, 99 (2022), doi: https://doi.org/10.1002/htj.22299

  41. X Wu and Y e Ren, J. Comput. Appl. Math. 205, 239 (2007), doi: https://doi.org/10.1016/j.cam.2006.04.055

  42. R K Chandrawat, V Joshi and O A Bég, Int. Commun. Heat Mass Transf. 130, 105758 (2022), doi: https://doi.org/10.1016/j.icheatmasstransfer.2021.105758

  43. R K Chandrawat, V Joshi and O A Bég, J. Nanofluids 10, 552 (2021), doi: https://doi.org/10.1166/jon.2021.1805

    Article  Google Scholar 

  44. R K Chandrawat and V Joshi, Int. J. Math. Eng. Manag. Sci. 6, 1315 (2021), doi: https://doi.org/10.33889/ijmems.2021.6.5.079

    Article  Google Scholar 

  45. R K Chandrawat and V Joshi, Int. J. Heat Technol. 39, 1180 (2021), doi: https://doi.org/10.18280/ijht.390416

    Article  Google Scholar 

  46. H A Attia, W Abbas and M A M Abdeen, J. Braz. Soc. Mech. Sci. Eng. 38, 2381 (2016), doi: https://doi.org/10.1007/s40430-015-0311-y

    Article  Google Scholar 

  47. H A Attia, A L Aboul-Hassan, M A M Abdeen and A E D Abdin, Bulg. Chem. Commun. 46, 320 (2014)

    Google Scholar 

  48. K Ramesh and V Joshi, Int. J. Comput. Methods Eng. Sci. Mech. 20, 1 (2019), doi: https://doi.org/10.1080/15502287.2018.1520322

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrawat, R.K., Joshi, V., Tripathi, D. et al. Numerical solutions of a time-dependent hydromagnetic micropolar dusty fluid between parallel plates through an inclined channel. Pramana - J Phys 97, 24 (2023). https://doi.org/10.1007/s12043-022-02464-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02464-2

Keywords

PACS Nos

Navigation