Skip to main content

Advertisement

Log in

Two-stream plasma instability as a potential mechanism for particle escape from the Venusian ionosphere

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, we investigate the possibility of two-stream instability in the Venusian atmosphere leading to momentum transfer, then to the subsequent escape of hydrogen and oxygen ions from the ionosphere. We employ the hydrodynamic model and obtain the linear dispersion relation from which the two-stream instability is studied. Further, the interaction of solar wind with the ions of Venus ionosphere from which the instability sets in, has been studied using the data from ASPERA-4 of Venus express. The data support the fact that the two-stream instability can provide sufficient energy to accelerate ions to escape velocity of the planet and thus leave the Venusian ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. S A Hamouda, N E Emgau, R M Bohagar and A M Eissa, Int. J. Res. Granthaalayah 5, 29 (2017)

    Article  Google Scholar 

  2. T L Zhang et al, Science 336, 567 (2012)

    Article  ADS  Google Scholar 

  3. Y Futaana, G Stenberg Wieser, S Barabash and J G Luhmann, Space Sci. Rev. 212, 1453 (2017)

    Article  ADS  Google Scholar 

  4. S A Pope, M A Balikhin, T L Zhang, A O Fedorov, M Gedalin and S Barabash, Geophys. Res. Lett. 36, 07202 (2009), https://doi.org/10.1029/2008GL036977

  5. H Jeffreys, Geophys. J. Int. 4, 62 (1937)

    Article  ADS  Google Scholar 

  6. K E Bullen, Mon. Not. R. Astron. Soc. 110, 256 (1950)

    Article  ADS  Google Scholar 

  7. V N Zharkov, Earth, Moon and Planets: An International Journal of Solar System Science 29, 139 (1983)

    Article  ADS  Google Scholar 

  8. J Goswami, S Chandra, J Sarkar and B Ghosh Radiat. Eff. Defects Solids. 175, 961 (2020)

  9. J Sarkar, S Chandra, J Goswami, C Das and B Ghosh, AIP Conf. Proc. 2319(1), 030006 (2021)

  10. S Thakur, C Das and S Chandra, IEEE Trans. Plasma Sci. 50(6), 1545 (2022)

  11. S Chandra, J Goswami, J Sarkar, C Das, D Nandi and B Ghosh, Indian J. Phys. 1 (2022)

  12. J Sarkar, S Chandra, A Dey, C Das, A Marick and P Chatterjee, IEEE Trans. Plasma Sci. 50(6), 1565 (2022)

    Article  ADS  Google Scholar 

  13. K Sharry, D Dutta, M Ghosh and S Chandra, IEEE Trans. Plasma Sci. 50(6), 1585 (2022)

  14. S Chandra, R Banerjee, J Sarkar, S Zaman, C Das, S Samanta, F Deeba and B Dasgupta, J. Astrophys. Astron. 43, 71 (2022), https://doi.org/10.1007/s12036-022-09835-6

  15. C Das, S Chandra and B Ghosh, Contrib. Plasma Phys. 60, e202000028 (2020)

  16. C Das, S Chandra and B Ghosh, Plasma Phys. Control. Fusion 63, 015011 (2021)

    Article  ADS  Google Scholar 

  17. S Dey, D Maity, A Ghosh, P Samanta, A De and S Chandra, African Rev. Phys. 15, 33 (2021)

    Google Scholar 

  18. P Samanta, A De, S Dey, D Maity, A Ghosh and S Chandra, African Rev. Phys. 15, 10 (2021)

    Google Scholar 

  19. T Ghosh, S Pramanick, S Sarkar, A Dey and S Chandra, African Rev. Phys. 15, 45 (2021)

    Google Scholar 

  20. I Paul, S Chandra, S Chattopadhyay and S Paul, Indian J. Phys. 90, 1195 (2016)

    Article  ADS  Google Scholar 

  21. S Chandra, J Goswami, J Sarkar and C Das, J. Korean Phys. Soc. 76, 469 (2020)

    Article  ADS  Google Scholar 

  22. J Goswami, S Chandra, J Sarkar and B Ghosh, Pramana – J. Phys. 95, 54 (2021)

  23. A Roychowdhury, S Banerjee and S Chandra, African Rev. Phys. 15, 102 (2021)

    Google Scholar 

  24. A Majumdar, A Sen, B Panda, R Ghosal, S Mallick and S Chandra, African Rev. Phys. 15, 18 (2021)

    Google Scholar 

  25. S Ghosh, S Saha, T Chakraborty, K Sadhukhan, R Bhanja and S Chandra, African Rev. Phys. 15, 90 (2021)

    Google Scholar 

  26. M Ghosh, K Sharry, D Dutta and S Chandra, African Rev. Phys. 15, 63 (2021)

    Google Scholar 

  27. J Goswami, S Chandra, C Das and J Sarkar, IEEE Trans. Plasma Sci. 50, 1508 (2022)

    Article  ADS  Google Scholar 

  28. H Ren, Z Wu, J Cao and P K Chu, Phys. Lett. A 372, 2676 (2008)

    Article  ADS  Google Scholar 

  29. I Kourakis, F Verheest and N F Cramer, Phys. Plasmas 14, 022306 (2007)

    Article  ADS  Google Scholar 

  30. J Sarkar, S Chandra and B Ghosh, Z. Naturforsch. A 75, 819 (2020)

  31. N Jehan, M Salahuddin and A M Mirza, Phys. Plasmas 17, 052308 (2010)

    Article  ADS  Google Scholar 

  32. A K Singh and S Chandra, African Rev. Phys. 12, 84 (2018)

  33. C Das, S Chandra and B Ghosh, Pramana – J Phys. 95(2), 1 (2021)

  34. S Chandra, S N Paul and B Ghosh, Astrophys. Space Sci. 343, 213 (2013)

    Article  ADS  Google Scholar 

  35. J B Hsia, S M Chiu, M F Hsia, R L Chou and C S Wu, Phys. Fluids 22, 1737 (1979)

    Article  ADS  Google Scholar 

  36. H Qin and R C Davidson, Phys. Plasmas 21, 064505 (2014)

    Article  ADS  Google Scholar 

  37. M V Goldman, M M Oppenheim and D L Newman, Geophys. Res. Lett. 26, 1821 (1999)

    Article  ADS  Google Scholar 

  38. J Sarkar, S Chandra, J Goswami and B Ghosh, Contrib. Plasma Phys. 60(7), e201900202 (2020)

    Article  ADS  Google Scholar 

  39. S Chandra, C Das and J Sarkar, Z. Naturforsch. A 76(4), 329 (2021)

  40. A Ghosh, J Goswami, S Chandra, C Das, Y Arya and H Chhibber, IEEE Trans. Plasma Sci. 50(6), 1524 (2022)

    Article  ADS  Google Scholar 

  41. S Ballav, A Das, S Pramanick and S Chandra, IEEE Trans. Plasma Sci. 50(6), 1488 (2022)

    Article  ADS  Google Scholar 

  42. A Das, P Ghosh, S Chandra and V Raj, IEEE Trans. Plasma Sci. 50(6), 1598 (2022)

    Article  ADS  Google Scholar 

  43. C Das, S Chandra, S Kapoor and P Chatterjee, IEEE Trans. Plasma Sci. 50(6), 1579 (2022)

    Article  ADS  Google Scholar 

  44. H Lammer et al, Planet. Space Sci. 54, 1445 (2006)

    Article  ADS  Google Scholar 

  45. Z J Rong, S Barabash, G Stenberg, Y Futaana, T L Zhang, W X Wan, Y Wei, X D Wang, L H Chai and J Zhong, J. Geophys. Res. Space Phys. 120, 5593 (2015), https://doi.org/10.1002/2015JA021317

    Article  ADS  Google Scholar 

  46. S H Brecht and S A Ledvina, J. Geophys. Res. Space Phys. 126(2), e2020JA02779 (2021), https://doi.org/10.1029/2020JA027779

  47. S H Brecht and S A Ledvina, AGU Fall Meeting Abstr. 2019, SM33D-3240 (2019)

  48. R Bingham, V D Shapiro, K B Quest, D Üçer and B J Kellett, New Front. Adv. Plasma Phys. 1306, 7 (2010)

    ADS  Google Scholar 

  49. R Jarvinen, E Kallio, P Janhunen, S Barabash, T L Zhang, V Pohjola and I Sillanpää, Ann. Geophys. 27, 4333 (2009)

    Article  ADS  Google Scholar 

  50. L Chai et al, J. Geophys. Res. Space Phys. 120(6), 4446 (2015)

    Article  ADS  Google Scholar 

  51. S Salem, W M Moslem, M Lazar, R Sabry, R E Tolba and R Schlickeiser, Adv. Space Res. 65, 129 (2020)

    Article  ADS  Google Scholar 

  52. R E Hartle and J M Grebowsky, J. Geophys. Res. 95, 31 (1990)

    Article  ADS  Google Scholar 

  53. R E Hartle and J M Grebowsky, J. Geophys. Res. 98, 7437 (1993)

    Article  ADS  Google Scholar 

  54. S Barabash et al, Nature 450, 650 (2007)

    Article  ADS  Google Scholar 

  55. R Ramstad, Y Futaana, S Barabash, H Nilsson, S M Campo B, R Lundin and K Schwingenschuh, Geophys. Res. Lett. 40, 477 (2013)

  56. V K Yadav, IETE Tech. Rev. 38, 622 (2020)

  57. J G Luhmann, S A Ledvina, J G Lyon and C T Russell, Planet. Space Sci. 54, 1457 (2006)

    Article  ADS  Google Scholar 

  58. A Fedorov, S Barabash, J A Sauvaud, Y Futaana, T L Zhang, R Lundin and C Ferrier, J. Geophys. Res. 116, A07220 (2011), https://doi.org/10.1029/2011JA016427

  59. S Chandra, J Sarkar and B Ghosh, Plasma Phys. Rep. 47, 306 (2021)

    Article  ADS  Google Scholar 

  60. S Sarkar, A Sett, S Pramanick, T Ghosh, C Das and S Chandra, IEEE Trans. Plasma Sci. 50(6), 1477 (2022)

    Article  ADS  Google Scholar 

  61. A Maiti, S Chowdhury, P Singha, S Ray, R Dasgupta and S Chandra, African Rev. Phys. 15, 97 (2021)

    Google Scholar 

  62. H Sahoo, C Das, S Chandra, B Ghosh and K Mondal, IEEE Trans. Plasma Sci. 50(6), 1610 (2022)

    Article  ADS  Google Scholar 

  63. A Mukhopadhyay, D Bagui and S Chandra, African Rev. Phys. 15, 25 (2021)

    Google Scholar 

  64. J Goswami, S Chandra, J Sarkar and B Ghosh, AIP Conf. Proc. 2319, 030005 (2021)

  65. A Dey, S Chandra, C Das, S Mandal and T Das, IEEE Trans. Plasma Sci. 50(6), 1557 (2022)

    Article  ADS  Google Scholar 

  66. Shilpi, Sharry, C Das and S Chandra, Springer Proceedings in Complexity (2022)

  67. J Sarkar, S Chandra, J Goswami and B Ghosh, Springer Proceedings in Complexity (2022)

  68. S Chandra, S Kapoor, D Nandi, C Das and D Bhattacharjee, IEEE Trans. Plasma Sci. 50(6), 1495 (2022)

    Article  ADS  Google Scholar 

  69. G Manna, S Dey, J Goswami, S Chandra, J Sarkar and A Gupta, IEEE Trans. Plasma Sci. 50(6), 1464 (2022)

    Article  ADS  Google Scholar 

  70. H Sahoo, S Chandra and B Ghosh, African Rev. Phys. 10, 235 (2015)

    Google Scholar 

  71. J Sarkar, J Goswami, S Chandra and B Ghosh, Laser Part. Beams 35, 641 (2017)

    Article  ADS  Google Scholar 

  72. A Singh and S Chandra, Laser Part. Beams 35, 252 (2017)

    Article  ADS  Google Scholar 

  73. M Chatterjee, M Dasgupta, S Das, M Halder and S Chandra, African Rev. Phys. 15, 75 (2021)

    Google Scholar 

  74. S Ballav, S Kundu, A Das and S Chandra, African Rev. Phys. 15, 54 (2021)

    Google Scholar 

Download references

Acknowledgements

This work based on the data of the Venus Solar Wind Interactions, administered by Brecht, S. H.; Ledvina, S. A., with the identifier urn:nasa:pds:venus-solar-wind-interactions::1.0 which is archived at The NASA Planetary Data System (PDS), doi.org/10.17189/1520598. This work makes use of data which are licensed under the terms of CC Attribution 4.0. These data were retrieved from PDS-PPI IGPP UCLA [46, 47] provided by European Space Agency (ESA). The authors also acknowledge the support received from the Institute of Natural Sciences and Applied Technology, Kolkata. The authors thank the reviewers whose comments and suggestions have helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Ghosh, S., Maity, D. et al. Two-stream plasma instability as a potential mechanism for particle escape from the Venusian ionosphere. Pramana - J Phys 96, 213 (2022). https://doi.org/10.1007/s12043-022-02462-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02462-4

Keywords

PACS Nos

Navigation