Skip to main content
Log in

On the efficiency of quantum error correction for quantum image transmission algorithm

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Quantum imaging algorithm is modified to reduce the complexity of the quantum circuit. Simplification was done by replacing nonlinear optical elements by linear elements which allow one to obtain conventional quantum entanglement operator. The obtained results show the expected efficiency of data transmission. Quantum error correction is used to improve the quality of image transmission. Modelling of image transmission with classic quantum computer interpreter is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G J Milburn and M J Woolley, Contemp. Phys. 49(6), 413 (2008)

    Article  ADS  Google Scholar 

  2. A Pathak and A Banerjee, Optical quantum information and quantum communication (SPIE Spotlight, NY, 2016)

    Book  Google Scholar 

  3. V O Sheremetev, A S Rudenko and A I Trifanov, Nanosystems: Phys. Chem. Math. 9, 484 (2018)

    Google Scholar 

  4. M P Faleeva and I Y Popov, Quantum Inform. Process. 19, 72 (2020), https://doi.org/10.1007/s11128-019-2569-y

    Article  ADS  Google Scholar 

  5. M P Faleeva and I Y Popov, Nanosyst.: Phys. Chem. Math. 11, 651 (2020)

    Google Scholar 

  6. M P Faleeva and I Y Popov, Indian J. Phys. 96, 2501 (2022)

    Article  ADS  Google Scholar 

  7. M Bohmann, A A Semenov, J Sperling and W Vogel. Phys. Rev. A 94, 010302(R) (2016)

    Article  ADS  Google Scholar 

  8. D Yu Vasylyev, A A Semenov and W Vogel, Phys. Rev. Lett. 117, 090501 (2016)

    Article  Google Scholar 

  9. T Herbst, T Scheidl, M Fink, J Handsteiner, B Wittmann, R Ursin and A Zeilinger, PNAS 112, 14202 (2015)

    Article  ADS  Google Scholar 

  10. P A Gilev and I Y Popov, Nanosyst.: Phys. Chem. Mathem. 10, 410 (2019)

    Google Scholar 

  11. T B Pittman, Y H Shih, D V Strekalov and A V Sergienko, Phys. Rev. A 52 R3429 (1995)

    Article  ADS  Google Scholar 

  12. P A Morris, R S Aspden, J E C Bell, R W Boyd and M J Padgett, Nature Commun. 6, 5913 (2015)

    Article  ADS  Google Scholar 

  13. M Unternahrer, B Bessire, L Gasparini, M Perenzoni and A Stefanov, Optica 5, 1150 (2018)

    Article  ADS  Google Scholar 

  14. R Tenne et al, Nat. Photon. 13, 116 (2019)

    Article  ADS  Google Scholar 

  15. Ch Schnell, Nature Meth. 16, 214 (2019)

    Article  Google Scholar 

  16. M Genovese, J. Opt. 18, 073002 (2016)

    Article  ADS  Google Scholar 

  17. M Kolobov (Ed.), Quantum imaging (Springer, Berlin, 2007)

    Google Scholar 

  18. G   B Lemos, V Borish, G  D Cole, S Ramelow, R Lapkiewicz  and A Zeilinger, Nature 512, 409 (2014)

    Article  ADS  Google Scholar 

  19. P W Shor, Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. G P Miroshnichenko for interesting discussion and Prof. Xi-Cheng Zhang for stimulating questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Y Popov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, S.S., Gilev, P.A. & Popov, I.Y. On the efficiency of quantum error correction for quantum image transmission algorithm. Pramana - J Phys 96, 211 (2022). https://doi.org/10.1007/s12043-022-02454-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02454-4

Keywords

PACS

Navigation