Skip to main content
Log in

A systematic comparative analysis of Quantum mechanics-based image processing and denoising algorithms

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

Quantum image processing is a significant branch of Quantum computing and is widely used in various industrial and research-based applications. Quantum image processing algorithms can be developed by utilizing different features of Quantum mechanics principles and image processing. This paper aims to provide a detailed review that addresses related Quantum image processing and Quantum Boolean image denoising techniques for real-time-based applications. The recent advancement in Quantum computing has led to multidisciplinary research in Quantum image processing that can process large amounts of image data at once. The characteristics of Quantum principles like parallelism, Entanglement, Fourier transformation, Filter superposition, and noise reduction provide various advantages for image processing over conventional ones. The performance measures of all Quantum-based image processing techniques are also compared and highlighted briefly to motivate innovative Quantum processing researchers. This paper also discusses the errors that occur due to sensitive characteristics of the Quantum system. The various algorithms of Quantum image denoising are discussed in the research discussion by implementing all on IBM Qiskit libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Abiko, R., Ikehara, M.: Blind denoising of mixed gaussian-impulse noise by single cnn. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1717–1721 (2019)

  2. Agarwal, P., Alam, M.: Quantum-inspired support vector machines for human activity recognition in industry 4.0. In: Proceedings of Data Analytics and Management, pp. 281–290. Springer (2022)

  3. Aharonov, D., Cotler, J., Qi, X.-L.: Quantum algorithmic measurement. Nat. Commun. 13(1), 1–9 (2022)

    Article  Google Scholar 

  4. Alcazar, J., Leyton-Ortega, V., Perdomo-Ortiz, A.: Classical versus Quantum models in machine learning: insights from a finance application. Mach. Learn. Sci. Technol. 1(3), 035003 (2020)

    Article  Google Scholar 

  5. Alderete, C.H., Gordon, M.H., Sauvage, F., Sone, A., Sornborger, A.T., Coles, P.J., Cerezo, M.: Inference-based Quantum sensing. Phys. Rev. Lett. 129(19), 190501 (2022)

    Article  MathSciNet  Google Scholar 

  6. Aradau, C., Blanke, T.: The (big) data-security assemblage: knowledge and critique. Big Data Soc. 2(2), 2053951715609066 (2015)

    Article  Google Scholar 

  7. Azzaoui, A.E., Sharma, P.K., Park, J.H.: Blockchain-based delegated Quantum cloud architecture for medical big data security. J. Netw. Comput. Appl. 198, 103304 (2022)

    Article  Google Scholar 

  8. Babbush, R., McClean, J.R., Newman, M., Gidney, C., Boixo, S., Neven, H.: Focus beyond quadratic speedups for error-corrected Quantum advantage. PRX Quantum 2(1), 010103 (2021)

    Article  Google Scholar 

  9. Bachtis, D., Aarts, G., Lucini, B.: Quantum field-theoretic machine learning. Phys. Rev. D 103(7), 074510 (2021)

    Article  MathSciNet  Google Scholar 

  10. Bajaj, K., Sharma, B., Singh, R.: Implementation analysis of iot-based offloading frameworks on cloud/edge computing for sensor-generated big data. Complex Intell. Syst. 8(5), 3641–3658 (2022)

    Article  Google Scholar 

  11. Banchi, L., Pereira, J., Pirandola, S.: Generalization in Quantum machine learning: A Quantum information standpoint. PRX Quantum 2(4), 040321 (2021)

    Article  Google Scholar 

  12. Barbu, T.: Variational Quantum denoising technique for medical images. In: 2020 International Conference on e-Health and Bioengineering (EHB), pp. 1–4 (2020)

  13. Beckey, J.L., Cerezo, M., Sone, A., Coles, P.J.: Variational Quantum algorithm for estimating the Quantum fisher information. Phys. Rev. Res. 4(1), 013083 (2022)

    Article  Google Scholar 

  14. Benedictus, F.: Quantum information. Springer (2012)

  15. Bhatia, M., Sood, S.: Quantum computing-inspired network optimization for IoT applications. IEEE Internet Things J. 7(6), 5590–5598 (2020)

    Article  Google Scholar 

  16. Bhattacharyya, S., Pal, P., Bhowmick, S.: Binary image denoising using a Quantum multilayer self organizing neural network. Appl. Soft Comput. 24, 717–729 (2014)

    Article  Google Scholar 

  17. Cavalcanti, E., Fuchs, C.A.: Coming of age with Quantum information: notes on a Paulian idea. Springer (2012)

  18. Cerezo, M., Sharma, K., Arrasmith, A., Coles, P.J.: Variational Quantum state eigensolver. arXiv preprint arXiv:2004.01372 (2020)

  19. Chakraborty, S., Shaikh, S.H., Chakrabarti, A., Ghosh, R.: An image denoising technique using Quantum wavelet transform. Int. J. Theor. Phys. 59(11), 3348–3371 (2020)

    Article  MathSciNet  Google Scholar 

  20. Chen, S.Y.-C., Huang, C.-M., Hsing, C.-W., Goan, H.-S., Kao, Y.-J.: Variational Quantum reinforcement learning via evolutionary optimization. Mach. Learn. Sci. Technol. 3(1), 015025 (2022)

    Article  Google Scholar 

  21. Convy, I., Liao, H., Zhang, S., Patel, S., Livingston, W.P., Nguyen, H.N., Siddiqi, I., Whaley, K.B.: Machine learning for continuous Quantum error correction on superconducting qubits. New J. Phys. 24(6), 063019 (2022)

    Article  MathSciNet  Google Scholar 

  22. Dallaire-Demers, P.-L., Killoran, N.: Quantum generative adversarial networks. Phys. Rev. A 98(1), 012324 (2018)

    Article  Google Scholar 

  23. Ding, Y., Javadi-Abhari, A.: Quantum and post-moore’s law computing. IEEE Internet Comput. 26(1), 5–6 (2022)

    Article  Google Scholar 

  24. DiVincenzo, D.P.: Book review on Quantum computation and Quantum information. Quantum Inf. Comput. 1(2), 95–96 (2001)

    MathSciNet  Google Scholar 

  25. Dutta, S., Basarab, A., Georgeot, B., Kouamé, D.: Quantum mechanics-based signal and image representation: Application to denoising. IEEE Open J. Signal Process. 2, 190–206 (2021)

    Article  Google Scholar 

  26. Dutta, S., Basarab, A., Georgeot, B., Kouamé, D.: A novel image denoising algorithm using concepts of Quantum many-body theory. Signal Process. 201, 108690 (2022)

    Article  Google Scholar 

  27. Endo, S., Cai, Z., Benjamin, S.C., Yuan, X.: Hybrid Quantum-classical algorithms and Quantum error mitigation. J. Phys. Soc. Japan 90(3), 032001 (2021)

    Article  Google Scholar 

  28. Faccia, A., Mataruna-Dos-Santos, L.J., Helú, H.M., Guimaraes-Mataruna, A.F.: Tackling big data and black swans through fractal approach and Quantum technology. In: Proceedings of the 2020 International Conference on Big Data in Management, pp. 28–32 (2020)

  29. Fu, X.-W., Ding, M.-Y., Cai, C.: Despeckling of medical ultrasound images based on Quantum-inspired adaptive threshold. Electron. Lett. 46(13), 889–891 (2010)

    Article  Google Scholar 

  30. Ghasemaghaei, M.: The role of positive and negative valence factors on the impact of bigness of data on big data analytics usage. Int. J. Inf. Manag. 50, 395–404 (2020)

    Article  Google Scholar 

  31. Goscinski, A., Delicato, F.C., Fortino, G., Kobusińska, A., Srivastava, G.: Special issue on Distributed Intelligence at the Edge for the Future Internet of Things. Elsevier (2023)

  32. Hsieh, H.-Y., Ning, J., Chen, Y.-R., Wu, H.-C., Chen, H.L., Wu, C.-M., Lee, R.-K.: Direct parameter estimations from machine learning-enhanced Quantum state tomography. Symmetry 14(5), 874 (2022)

    Article  Google Scholar 

  33. Huang, H.-Y., Kueng, R., Torlai, G., Albert, V.V., Preskill, J.: Provably efficient machine learning for Quantum many-body problems. Science 377(6613), 3333 (2022)

    Article  MathSciNet  Google Scholar 

  34. Huang, H.-Y., Broughton, M., Cotler, J., Chen, S., Li, J., Mohseni, M., Neven, H., Babbush, R., Kueng, R., Preskill, J., et al.: Quantum advantage in learning from experiments. Science 376(6598), 1182–1186 (2022)

    Article  MathSciNet  Google Scholar 

  35. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)

    Article  MathSciNet  Google Scholar 

  36. Jing, Z., Huda, W., Walker, J.K., Choi, W.Y.: Detective Quantum efficiency of a csi: Tl scintallator-based scanning slot X-ray detector for digital mammography. In: Medical Imaging 1998: Physics of Medical Imaging, vol. 3336, pp. 583–591 (1998)

  37. Kerger, P., Miyazaki, R.: Quantum image denoising: a framework via Boltzmann machines, QUBO, and Quantum annealing (2023)

  38. Kerstin, B., Dmytro, B., Terry, F., Tobias, O., Robert, S., Ramona, W.: Efficient learning for deep Quantum neural networks. Nature (2019)

  39. Khabiboulline, E.T., Borregaard, J., De Greve, K., Lukin, M.D.: Quantum-assisted telescope arrays. Phys. Rev. A 100(2), 022316 (2019)

    Article  Google Scholar 

  40. Khan, R.A.: An improved flexible representation of Quantum images. Quantum Inf. Process. 18, 1–19 (2019)

    Article  MathSciNet  Google Scholar 

  41. Konar, D., Bhattacharyya, S., Das, N., Panigrahi, B.K.: A Quantum bi-directional self-organizing neural network (qbdsonn) for binary image denoising. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1225–1230 (2015)

  42. Konar, D., Bhattacharyya, S., Panigrahi, B., Ghose, M.: An efficient pure color image denoising using Quantum parallel bidirectional self-organizing neural network architecture. In: Quantum Inspired Computational Intelligence, pp. 149–205. Elsevier (2017)

  43. Krelina, M.: Quantum technology for military applications. EPJ Quantum Technol. 8(1), 24 (2021)

    Article  Google Scholar 

  44. Laghrib, A., Afraites, L., Hadri, A., Nachaoui, M.: A non-convex pde-constrained denoising model for impulse and gaussian noise mixture reduction. Inverse Probl. Imaging 17(1), 23–67 (2023)

    Article  MathSciNet  Google Scholar 

  45. Larocca, M., Czarnik, P., Sharma, K., Muraleedharan, G., Coles, P.J., Cerezo, M.: Diagnosing barren plateaus with tools from Quantum optimal control. Quantum 6, 824 (2022)

    Article  Google Scholar 

  46. Lebrun, M., Colom, M., Buades, A., Morel, J.-M.: Secrets of image denoising cuisine. Acta Numer. 21, 475–576 (2012)

    Article  MathSciNet  Google Scholar 

  47. Lekbir, A., Aissam, H., Amine, L., Mourad, N.: A non-convex denoising model for impulse and gaussian noise mixture removing using bi-level parameter identification. Inverse Probl. Imaging 16(4), 827–870 (2022)

    Article  MathSciNet  Google Scholar 

  48. Li, H.-S., Zhu, Q., Li, M.-C., Ian, H., et al.: Multidimensional color image storage, retrieval, and compression based on Quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)

    Article  Google Scholar 

  49. Lin, T., Lei, G.-W., You, R.-Y., Chen, Z.: A novel noise-removed algorithm for tagging effects in intermolecular multiple-Quantum coherence magnetic resonance images. In: 2009 IEEE International Symposium on IT in Medicine & Education, vol. 1, pp. 394–396 (2009)

  50. Liu, Y., Sun, M., Jia, Z., Yang, J., Kasabov, N.K.: Denoising of fluorescence image on the surface of Quantum dot/nanoporous silicon biosensors. Sensors 22(4), 1366 (2022)

    Article  Google Scholar 

  51. Liu, X., Fan, H., Li, Y., Zhang, H., Ye, Y.: Gaussian-impulse mixed noise image recovery based on ab fractional calculus and snss priors. Digit. Signal Process. 141, 104171 (2023). https://doi.org/10.1016/j.dsp.2023.104171

    Article  Google Scholar 

  52. Luo, L., Li, X., Yang, K., Wei, M., Chen, J., Yang, J., Yao, L.: Intelligent identification over power big data: Opportunities, solutions, and challenges. CMES-Computer Modeling in Engineering & Sciences (2022)

  53. Lytras, M., Visvizi, A., Zhang, X., Aljohani, N.R.: Cognitive computing. Big Data Analytics and data driven industrial marketing, Elsevier (2020)

  54. Mallow, G.M., Hornung, A., Barajas, J.N., Rudisill, S.S., An, H.S., Samartzis, D.: Quantum computing: the future of big data and artificial intelligence in spine. Spine Surg. Relat. Res. 6(2), 93–98 (2022)

    Article  Google Scholar 

  55. Mastriani, M.: Quantum boolean image denoising. Quantum Inf. Process. 14(5), 1647–1673 (2015)

    Article  MathSciNet  Google Scholar 

  56. Meng, Q., Wang, K., He, X., Guo, M.: Qoe-driven big data management in pervasive edge computing environment. Big Data Min. Anal. 1(3), 222–233 (2018)

    Article  Google Scholar 

  57. Meyer, J.J., Borregaard, J., Eisert, J.: A variational toolbox for Quantum multi-parameter estimation. npj Quantum Inf. 7(1), 1–5 (2021)

    Article  Google Scholar 

  58. Nakahara, M., Sasaki, Y.: Quantum Information And Quantum Computing-Proceedings Of Symposium, vol. 6. World Scientific (2012)

  59. Nguyen, N., Chen, K.-C.: Quantum embedding search for Quantum machine learning. IEEE Access 10, 41444–41456 (2022)

    Article  Google Scholar 

  60. Nielsen, M.A., Chuang, I.: Quantum computation and Quantum information. In: American Association of Physics Teachers (2002)

  61. Nisha, S.S., Patil, H., Bag, A., Singh, A., Kumar, Y., Kumar, J.S.: Critical information framework against cyber-attacks using artificial intelligence and big data analytics. In: 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 533–537 (2022)

  62. Pan, J., Cao, T., Zhang, X., Huang, H.: A quantum-inspired noise reduction method based on noise feature codebook. In: 2012 International Conference on Computer Vision in Remote Sensing, pp. 158–163 (2012)

  63. Peters, B., Meyer-Ebrecht, D., Lehmann, T.M., Schmitt, W.: System analysis of x-ray-sensitive ccds and adaptive restoration of intraoral radiographs. Med. Imaging 1996: Image Process. 2710, 450–461 (1996)

    Article  Google Scholar 

  64. Phillipson, F., Wezeman, R.S., Chiscop, I.: Indoor-outdoor detection in mobile networks using Quantum machine learning approaches. Computers 10(6), 71 (2021)

    Article  Google Scholar 

  65. Prince, M., Prathap, P.: A novel approach to design distribution preserving framework for big data. Int. Autom. Soft Comput. 35(3), 2789–2803 (2023)

    Article  Google Scholar 

  66. Sandhu, A.K.: Big data with cloud computing: discussions and challenges. Big Data Min. Anal. 5(1), 32–40 (2021)

    Article  Google Scholar 

  67. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical Quantum key distribution. Rev. Modern Phys. 81(3), 1301 (2009)

    Article  Google Scholar 

  68. Schuld, M., Petruccione, F.: Quantum Machine Learning. (2017)

  69. Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a Quantum neural network. Quantum Inf. Process. 13(11), 2567–2586 (2014)

    Article  MathSciNet  Google Scholar 

  70. Shokry, A., Youssef, M.: Quantum computing for location determination. arXiv preprint arXiv:2106.11751 (2021)

  71. Singh, B., Indu, S., Majumdar, S.: Development of a classification architecture for images represented using Quantum theory : *using ibm qiskit liberaries. In: 2023 3rd International Conference on Artificial Intelligence and Signal Processing (AISP), pp. 1–5 (2023)

  72. Singh, A., Ahmad, S., Haque, M.I.: Big data science and exasol as big data analytics tool. Int. J. Innov. Technol. Explor. Eng. 8(9S), 933–937 (2019)

    Article  Google Scholar 

  73. Smith, R., Basarab, A., Georgeot, B., Kouamé, D.: Adaptive transform via Quantum signal processing: application to signal and image denoising. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1523–1527 (2018)

  74. Sowa, A.: Image processing via simulated Quantum dynamics. Random Oper. Stoch. Equ. 25(1), 27–39 (2017)

    Article  MathSciNet  Google Scholar 

  75. Suau, A., Staffelbach, G., Todri-Sanial, A.: qprof: a gprof-inspired Quantum profiler. ACM Trans. Quantum Comput. 4(1), 1–28 (2022)

    Article  MathSciNet  Google Scholar 

  76. Tang, E.: Dequantizing algorithms to understand Quantum advantage in machine learning. Nat. Rev. Phys. 4, 1–2 (2022)

    Article  Google Scholar 

  77. Tirado, E.S.: Quantum image processing using Gaussian–Hermite filters. Quant. Inf. Comput. 8749, 231–247 (2013)

    Google Scholar 

  78. Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.: Quantum generalisation of feedforward neural networks. npj Quantum Inf. 3(1), 1–8 (2017)

    Article  Google Scholar 

  79. Wang, Y.: Issue 4.1, winter 2022 (2022)

  80. Wang, Y., Lin, K.-Y., Cheng, S., Li, L.: Variational Quantum extreme learning machine. Neurocomputing 512, 83–99 (2022)

    Article  Google Scholar 

  81. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning. arXiv preprint arXiv:1412.3489 (2014)

  82. Wiseman, H.M.: Benjamin Schumacher and Michael Westmoreland: Quantum processes, systems, & information. Springer (2010)

  83. Xu, A., Huang, W., Li, P., Chen, H., Meng, J., Guo, X.: Mechanical vibration signal denoising using Quantum-inspired standard deviation based on subband based gaussian mixture model. Shock Vib. 2018 (2018)

  84. Yan, S., Ni, G., Zeng, T.: Nonconvex model for mixing noise with fractional-order regularization. Inverse Probl. Imaging 17(1), 275–296 (2023)

    Article  MathSciNet  Google Scholar 

  85. Zhang, Y., Bi, S., Wei, S.: Quantum-inspired remote sensing image denoising with double density dual-tree complex wavelet transform. In: International Symposium on Optoelectronic Technology and Application 2014: Optical Remote Sensing Technology and Applications, vol. 9299, pp. 156–161 (2014)

  86. Zhang, B., Xu, P., Chen, X., Zhuang, Q.: Generative Quantum machine learning via denoising diffusion probabilistic models (2023)

  87. Zhang, D., Lian, Q., Yang, Y.: Twp: Two-stage projection framework with manifold constraint for image reconstruction. Digit. Signal Process. 141, 104186 (2023). https://doi.org/10.1016/j.dsp.2023.104186

    Article  Google Scholar 

Download references

Acknowledgements

The research is mostly focused on the development of Quantum computing and image processing tools. Many scholars find it to be an intriguing field with many outstanding problems. In this paper, the obstacles and future developments in Quantum image processing and denoising are also summarized and projected. This work will aid researchers in understanding improvements in Quantum image denoising in the field of Quantum image processing and hence has some reference value.

Funding

The authors received no specific funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

The author wants to thank Delhi Technological University for providing lab facilities The author also wishes to thank Prof. Sree-devi Indu and Dr. Sudipta Majumdar for their assistance in typing the first draft of this work. Similarly, the author appreciates the support of both the writers and the editors of the articles featured in the review, many of whom not only gave permission to reproduce some of their figures but were also gracious enough to assist with high-quality versions of such images. The manuscript was written by Barkha Singh, and edited by Prof. Sree-devi Indu and Dr. Sudipta Majumdar. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Barkha Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Consent to participate

Not applicable.

Consent for publication

Not applicable as no new data are created for this article.

Code availability

Not applicable.

Ethical approval

Approved.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Majumdar, S. & Indu, S. A systematic comparative analysis of Quantum mechanics-based image processing and denoising algorithms. Quantum Stud.: Math. Found. (2024). https://doi.org/10.1007/s40509-024-00330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40509-024-00330-x

Keywords

Navigation