Skip to main content
Log in

Tension in rope coiling on a rotating plane

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Coiling of rope, fed from a height onto a rotating plane, progresses through a sequence of shapes, a hypotrochoid to an epitrochoid to a circle as the frequency of the plane increases. Feeding velocity controls the rate of length deposition on a plane and frequency of the plane controls the rate of length transfer from a contact point, where rope first touches a plane. Secondary loops of a hypotrochoid or an epitrochoid are formed when the deposition rate is faster than the transfer rate. When these two rates are comparable, secondary loops disappear and the shape returns to a circle like in rope coiling on a static plane. In a reference frame co-rotating with rope, the Coriolis and centrifugal forces act only at the contact point, not extending to the portion of rope far above a rotating plane. For a small deflection of rope, tension is inferred from the equations of motion by using the radius and frequency of a primary loop measured in experiments. Tension changes continuously at both the hypotrochoid–epitrochoid transition and the epitrochoid–circle transition, reminiscent of the features of a second-order phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L Mahadevan and J B Keller, Proc. R. Soc. Lond. A 452, 1679 (1996)

    Article  ADS  Google Scholar 

  2. M Habibi, N M Ribe and D Bonn, Phys. Rev. Lett. 99, 154302 (2007)

    Article  ADS  Google Scholar 

  3. J L Silverberg, R D Noar, M S Packer, M J Harrison, C L Henley, I Cohen and S J Gerbode, Proc. Natl. Acad. Sci. 109, 16794 (2012)

    Article  ADS  Google Scholar 

  4. M Habibi, Y Rahmani, D Bonn and N M Ribe, Phys. Rev. Lett. 104, 74301 (2010)

    Article  ADS  Google Scholar 

  5. M Habibi, S H Hosseini, M H Khatami and N M Ribe, Phys. Fluids 26, 24101 (2014)

    Article  Google Scholar 

  6. J Tian, N M Ribe, X Wu and H Shum, Phys. Rev. Lett. 125, 104502 (2020)

    Article  ADS  Google Scholar 

  7. R H Heisser, V P Patil, N Stoop, E Villermaux and J Dunkel, Proc. Natl. Acad. Sci. 115, 8665 (2018)

    Article  ADS  Google Scholar 

  8. K Son, J S Guasto and R Stocker, Nat. Phys. 9, 494 (2013)

    Article  Google Scholar 

  9. S Chiu-webster and J R Lister, J. Fluid Mech. 569, 89 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. S W Morris, J H P Dawes, N M Ribe and J R Lister, Phys. Rev. E 77, 66218 (2008)

    Article  ADS  Google Scholar 

  11. M Habibi, J Najafi and N M Ribe, Phys. Rev. E 84, 16219 (2011)

    Article  ADS  Google Scholar 

  12. S Chandrasekhar, Proc. R. Soc. Lond. A 286, 1 (1965)

    Article  ADS  Google Scholar 

  13. P Aussillous and D Quéré, J. Fluid Mech. 512, 133 (2004)

    Article  ADS  Google Scholar 

  14. S P Thampi and R Govindarajan, Phys. Rev. E 84, 46304 (2011)

    Article  ADS  Google Scholar 

  15. S P Thampi and R Govindarajan, Pramana – J. Phys. 84, 409 (2015)

    Article  ADS  Google Scholar 

  16. P S Raux, P M Reis, J W M Bush and C Clanet, Phys. Rev. Lett. 105, 44301 (2010)

    Article  ADS  Google Scholar 

  17. H King, R D Schroll, B Davidovitch and N Menon, Proc. Natl. Acad. Sci. 109, 9716 (2012)

    Article  ADS  Google Scholar 

  18. E Hamm and J C Géminard, Am. J. Phys. 78, 828 (2010)

    Article  ADS  Google Scholar 

  19. A Grewal, P Johnson and A Ruina, Am. J. Phys. 79, 723 (2011)

    Article  ADS  Google Scholar 

  20. M K Jawed, F Da, J Joo, E Grinspun and P M Reis, Proc. Natl. Acad. Sci. 111, 14663 (2014)

    Article  ADS  Google Scholar 

  21. M K Jawed, P T Brun and P M Reis, J. Appl. Mech. 82, 121007 (2015)

    Article  ADS  Google Scholar 

  22. K Blaum, Y N Novikov and G Werth, Contemp. Phys. 51, 149 (2010)

    Article  ADS  Google Scholar 

  23. S Amnuanpol, EPL 125, 54001 (2019)

    Article  ADS  Google Scholar 

  24. B Audoly and Y Pomeau, Elasticity and geometry (Oxford University Press, Oxford, 2010)

    MATH  Google Scholar 

  25. L D Landau and E M Lifshitz, Theory of elasticity (Pergamon, Oxford, 1970)

    MATH  Google Scholar 

  26. H Zhou, Y Zhang and Z Ou-yang, Pramana – J. Phys. 61, 353 (2003)

  27. J M T Thompson and A R Champneys, Proc. R. Soc. Lond. A 452, 117 (1996)

    Article  ADS  Google Scholar 

  28. A Sharma, Pramana – J. Phys. 65, 601 (2005)

  29. L D Landau and E M Lifshitz, Statistical physics (Pergamon, Oxford, 1970)

    MATH  Google Scholar 

  30. M Habibi, P C F Moller, N M Ribe and D Bonn, EPL 81, 38004 (2008)

    Article  ADS  Google Scholar 

  31. S G Prasath, J Marthelot, R Govindarajan and N Menon, Phys. Rev. Fluids 1, 33903 (2016)

    Article  ADS  Google Scholar 

  32. T A Sobral and M A F Gomes, J. Phys. D: Appl. Phys. 48, 335305 (2015)

    Article  Google Scholar 

  33. S G Prasath, J Marthelot, R Govindarajan and N Menon, Proc. R. Soc. Lond. A 477, 20210353 (2021)

  34. M Y Sheinin and M D Wang, Science 338, 56 (2012)

    Article  ADS  Google Scholar 

  35. C Bustamante, Z Bryant and S E Smith, Nature 421, 423 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks P Pharob for technical assistance and P Srinukool for the Young’s modulus measurement. He also thanks the anonymous referees for constructive comments. This work has been supported by Thammasat University through a fast-track grant TUFT 25/2565. He acknowledges the funding provided by fast-track grant (Grant no. FT2565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitichoke Amnuanpol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amnuanpol, S. Tension in rope coiling on a rotating plane. Pramana - J Phys 96, 208 (2022). https://doi.org/10.1007/s12043-022-02453-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02453-5

Keywords

PACS Nos

Navigation