Skip to main content
Log in

Vortex structure in spin–orbit-coupled spin-1 Bose gases with unequal atomic mass

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we study the ground state of the rotating spin-1 spin–orbit coupling (SOC) Bose–Einstein condensates (BECs) in a hamornic trap. Within the framework of mean-field theory, the effects of unequal atomic mass, spin–orbit coupling and rotation frequency are investigated. Our results display that the combined effects of these parameters create rich vortex structure. We also discuss the dependence of angular momentum per atom and spin polarisation as a function of spin–orbit coupling strength, showing that angular momentum increases with increasing spin–orbit coupling strength for a fixed rotation frequency and in this process first-order phase transition does not occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y J Lin, R L Compton, K Jiménez-García, W D Phillips, J V Porto and I B Spielman, Nat. Phys. 7, 531 (2011)

    Article  Google Scholar 

  2. J Y Zhang, S C Ji, Z Chen, L Zhang, Z D Du, B Yan, G S Pan, B Zhao, Y J Deng, H Zhai, S Chen and J W Pan, Phys. Rev. Lett. 109, 115301 (2012)

    Article  ADS  Google Scholar 

  3. L Huang, Z Meng, P Wang, P Peng, S L Zhang, L Chen, D Li, Q Zhou and J Zhang, Nat. Phys. 12, 540 (2016)

    Article  Google Scholar 

  4. I B Spielman, Phys. Rev. A 79, 063613 (2009)

    Article  ADS  Google Scholar 

  5. Y A Bychkov and E I Rashba, J. Phys. C 17, 6039 (1984)

    Article  ADS  Google Scholar 

  6. G Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  7. W Zhang and W Yi, Nat. Commun. 4, 2711 (2013)

    Article  ADS  Google Scholar 

  8. C Qu, Z Zheng, M Gong, Y Xu, L Mao, X Zou, G Guo and C Zhang, Nat. Commun. 4, 2710 (2013)

    Article  ADS  Google Scholar 

  9. Y Li, L P Pitaevskii and S Stringari, Phys. Rev. Lett. 108, 225301 (2012)

    Article  ADS  Google Scholar 

  10. T A Sedrakyan, A Kamenev and L I Glazman, Phys. Rev. A 86, 063639 (2012)

    Article  ADS  Google Scholar 

  11. R Liao, Y Y Xiang and W M Liu, Phys. Rev. Lett. 108, 080406 (2012)

    Article  ADS  Google Scholar 

  12. L A Peña Ardila and S Giorgini, Phys. Rev. A 94, 063640 (2016)

  13. L Rammelmüller, W J Porter, J E Drut and J Braun, Phys. Rev. D 96, 094506 (2017)

    Article  ADS  Google Scholar 

  14. P Zdybel and P Jakubczyk, Phys. Rev. Res. 2, 033486 (2020)

    Article  Google Scholar 

  15. R Kishor Kumar, A Gammal and L Tomio, Phys. Lett. A 384, 126535 (2020)

  16. H Tajima, Y Hidaka and D Satow, Phys. Rev. Res. 3, 013035 (2021)

    Article  Google Scholar 

  17. M Pini, P Pieri, R Grimm and G Calvanese Strinati, Phys. Rev. A 103, 023314 (2021)

    Article  ADS  Google Scholar 

  18. X F Zhou, J Zhou and C J Wu, Phys. Rev. A 84, 063624 (2011)

    Article  ADS  Google Scholar 

  19. Q Zhao and H J Bi, J. Low. Temp. Phys. 205, 1 (2021)

    Article  ADS  Google Scholar 

  20. B Dong, L X Wang, G P Chen, W Han, S G Zhang and X F Zhang, Ann. Phys. 373, 178 (2016)

    Article  ADS  Google Scholar 

  21. P Peng, G Q Li, W L Yang and Z Y Yang, Laser Phys. Lett. 15, 085501 (2018)

    Article  ADS  Google Scholar 

  22. P Peng, G Q Li, W L Yang and Z Y Yang, Phys. Lett. A 382, 2493 (2018)

    Article  ADS  Google Scholar 

  23. W Z Bao, I L Chern and F Y Lim, J. Comput. Phys. 219 836 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. R Zeng and Y Z Zhang, Comput. Phys. Commun. 180 854 (2009)

    Article  ADS  Google Scholar 

  25. E G M van Kempen, S J J M F Kokkelmans, D J Heinzen and B J Verhaar, Phys. Rev. Lett. 88, 093201 (2002)

    Article  ADS  Google Scholar 

  26. G Thalhammer, G Barontini, L De Sarlo, J Catani, F Minardi and M Inguscio, Phys. Rev. Lett. 100, 210402 (2008)

    Article  ADS  Google Scholar 

  27. C Chin, R Grimm, P Julienne and E Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  28. Y J Lin, K Jiménez-García and I B Spielman, Nature 471, 83 (2011)

    Article  ADS  Google Scholar 

  29. K W Madison, F Chevy, W Wohlleben and J Dalibard, Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  30. C F Liu and W M Liu, Phys. Rev. A 86, 033602 (2012)

    Article  ADS  Google Scholar 

  31. C F Liu, H Fan, Y C Zhang, D S Wang and W M Liu, Phys. Rev. A 86, 053616 (2012)

    Article  ADS  Google Scholar 

  32. H Zhu, C F Liu, D S Wang, S G Yin, L Zhuang and W M Liu, Phys. Rev. A 104, 053325 (2021)

    Article  ADS  Google Scholar 

  33. E Ruokokoski, J A M Huhtamäki and M Möttönen, Phys. Rev. A 86, 051607(R) (2012)

    Article  ADS  Google Scholar 

  34. H Wang, L H Wen, H Yang, C X Shi and J H Li, J. Phys. B 50, 155301 (2017)

    Article  ADS  Google Scholar 

  35. S K Adhikari, Laser. Phys. Lett. 16, 085501 (2019)

    Google Scholar 

  36. L H Pan, Q Wu, Q L Zhu and Y J Liu, Phys. Lett. A 384, 126430 (2020)

    Article  MathSciNet  Google Scholar 

  37. C F Liu, Y M. Yu, S C Gou and W M Liu, Phys. Rev. A 87, 063630 (2013)

    Article  ADS  Google Scholar 

  38. K Kasamatsu, M Tsubota and M Ueda, Phys. Rev. A 67, 033610 (2003)

    Article  ADS  Google Scholar 

  39. D F Zhang, T Y Gao, P Zou, L R Kong, R Z Li, X Shen, X L Chen, S G Peng, M S Zhan, H Pu and K J Jiang, Phys. Rev. Lett. 122, 110402 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ph.D. Start-up Fund (Grant No. BS2017096) of North China University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Bi, H. Vortex structure in spin–orbit-coupled spin-1 Bose gases with unequal atomic mass. Pramana - J Phys 96, 194 (2022). https://doi.org/10.1007/s12043-022-02447-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02447-3

Keywords

PACS Nos

Navigation