Skip to main content
Log in

Energy polydisperse 2d Lennard–Jones fluid in the presence of flow field

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The behaviour of energy polydisperse 2d Lennard–Jones fluid (in thin-film geometry) is studied subjected to linear flow field using molecular dynamics simulations. By considering neutral and selective substrates, we systematically explore the effect of flow field on particle ordering as well as response of the system. It is shown that particle density profile, spatial organisation as well as local particle identity ordering in the film are affected. Furthermore, we observe flow-induced melting associated with a decrease of effective interaction parameter, \(\langle \epsilon _i^\mathrm{eff} \rangle \), which characterises local neighbourhood identity ordering. In terms of macroscopic response, the systems exhibit both shear thinning and shear thickening, and shear thinning exponent decreases with increasing temperature and eventually attains Netwonian fluid-like behaviour at sufficiently high temperature. The onset of shear thinning is governed by the time scale of structural relaxation of the strongly attractive particles. It is found that the qualitative behaviour of the one-component LJ-fluid and energy polydisperse fluid with neutral substrates are similar in many respects, while the one with selective substrate shows differences. In the case of energy polydisperse system, the effect of having different substrate types is significantly manifested in the density profile near the interface, effective interaction parameter and in viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P N  Pusey, J. Phys. 48, 709 (1987)

    Article  Google Scholar 

  2. S  Auer and D  Frenkel, Nature 413, 711 (2001)

    Article  ADS  Google Scholar 

  3. J J Salacuse and G Stell, J. Chem. Phys. 77, 3714 (1982)

    Article  ADS  Google Scholar 

  4. P Sollich and M E Cates, Phys. Rev. Lett. 80, 1365 (1998)

    Article  ADS  Google Scholar 

  5. P B Warren, Phys. Rev. Lett. 80, 1369 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  6. J J Salacuse and G Steel, J. Chem. Phys. 77, 3714 (1982)

    Article  ADS  Google Scholar 

  7. J J Salacuse, J. Chem. Phys. 81, 2468 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  8. P Sollich and M E Cates, Phys. Rev. Lett. 80, 1365 (1998)

    Article  ADS  Google Scholar 

  9. P B Warren, Phys. Rev. Lett. 80, 1369 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  10. R M L Evans, J. Chem. Phys. 114, 1915 (2001)

    Article  ADS  Google Scholar 

  11. P Sollich, J. Phys.: Condens. Matter 14, R79 (2002)

    ADS  Google Scholar 

  12. N B Wilding et al, J. Chem. Phys. 125, 014908 (2006)

    Article  ADS  Google Scholar 

  13. M Buzzacchi et al, Phys. Rev. E 73, 046110 (2006)

    Article  ADS  Google Scholar 

  14. N B Wilding, P Sollich and M Bazzacchi, Phys. Rev. E 77, 011501 (2008)

    Article  ADS  Google Scholar 

  15. W M Jacobs and D Frenkel, J. Chem. Phys. 139, 024108 (2013)

    Article  ADS  Google Scholar 

  16. I M Sokolov, Soft Matter 8, 9043 (2012)

    Article  ADS  Google Scholar 

  17. R Metzler and J Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  Google Scholar 

  18. E Barkai, Y Garini and R Metzler, Phys. Today 65, 29 (2012)

  19. I Izeddin et al, eLife 3, e02230 (2014)

  20. O Benichou et al, Nature Chem. 2, 472 (2010)

    Article  ADS  Google Scholar 

  21. J-H  Jeon et al, Phys. Rev. X 6, 021006 (2016)

    Google Scholar 

  22. L  S  Shagolsem et al, J. Chem. Phys. 142, 051104 (2015)

    Article  ADS  Google Scholar 

  23. L  S  Shagolsem and Y Rabin, J. Chem. Phys. 144, 194504 (2016)

    Article  ADS  Google Scholar 

  24. M  Priya and P  K  Jaiswal, Phase Transitions 93(9), 895 (2020)

    Article  Google Scholar 

  25. C H  Lam, J. Stat. Mech.: Theory Exp. 2018(2), 023301 (2018)

    Article  Google Scholar 

  26. H Y  Deng, C S  Lee, M  Lulli, L H  Zhang and C H  Lam, J. Stat. Mech.: Theory and Exp. 2019(9), 094014 (2019)

    Article  Google Scholar 

  27. I  Azizi and Y   Rabin, J. Chem. Phys. 150, 134502 (2019)

    Article  ADS  Google Scholar 

  28. K  Singh and Y   Rabin, Phys. Rev. Lett. 123, 035502 (2019)

    Article  ADS  Google Scholar 

  29. T S  Ingebrigtsen and H  Tanaka, The J. Phys. Chem. B 120(31), 7704 (2016)

  30. T S  Ingebrigtsen, T B  Schroder and J C  Dyre, Phys. Rev. X 2(1), 011011 (2012)

    Google Scholar 

  31. E P George, D Raabe and R O Ritchie, Nature Rev. Mater. 4(8), 515 (2019)

    Article  ADS  Google Scholar 

  32. Y F Ye, Q Wang, J Lu, C T Liu and Y Yang, Mater. Today 19(6), 349 (2016)

    Article  Google Scholar 

  33. A Onuki, Phase transition dynamics (Cambridge University Press, Cambridge, England, 2004)

    MATH  Google Scholar 

  34. N  J  Wagner and J F  Brady, Phys. Today 62, 27 (2009)

    Article  Google Scholar 

  35. E  Brown et al, Nature Mater. 9, 220 (2010)

    Article  ADS  Google Scholar 

  36. D T N  Chen, Q  Wen, P A  Janmey, J C  Crocker and A G  Yodh, Annu. Rev. Condens. Matter Phys. 1, 301 (2010)

  37. E  Brown and H  M  Jaeger, Science 333, 1230 (2011)

    Article  ADS  Google Scholar 

  38. E  Brown and H J  Jaeger, Rep. Prog. Phys. 77, 046602 (2014)

  39. It is well known that the melting temperature (also liquid–solid relative free energy) scales as the inverse system size. However, as reported by Morris and Song, J. Chem. Phys. 116, 9352 (2002), LJ-fluid system shows no appreciable finite-size effects for \(N\) between 2000 and 16000. Furthermore, in a study by Mastny and Pablo, J. Chem. Phys. 127, 104504 (2007), it is also shown that to reduce systematic errors from finite-size effects below 1%, at least 864 particles should be considered. In view of this, the system size of \(N=2500\) particles considered here is reasonably large.

  40. D Berthelot, C. R. Acad. Sci. Paris 126, 1703 (1889)

    Google Scholar 

  41. S J Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  42. M P Allen and D J Tildesley, Computer simulation of liquids (Clarendon Press, Oxford, 1987)

    MATH  Google Scholar 

  43. F F Abraham, Phys. Rep. 80, 340 (1981)

    Article  ADS  Google Scholar 

  44. A Z Patashinsky et al, J. Phys. Chem. C 114, 20749 (2010)

    Article  Google Scholar 

  45. M  Miyahara and K E  Gubbin, J. Chem. Phys. 106, 2865 (1997)

    Article  ADS  Google Scholar 

  46. B A  Kopera and M  Retsch, Anal. Chem. 90(23), 13909 (2018)

    Article  Google Scholar 

  47. S Hess, Phys. Rev. A 22, 2844 (1980)

    Article  ADS  Google Scholar 

  48. D J Evans, H J M Hanley and S Hess, Phys. Today 37, 26 (1984)

    Article  ADS  Google Scholar 

  49. S Hess, Int. J. Thermophys. 6, 657 (1985)

    Article  ADS  Google Scholar 

  50. L  Banetta and A  Zaccone Phys. Rev. E 99, 052606 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  51. O Hess and S Hess, Physica A 207, 517 (1994)

    Article  ADS  Google Scholar 

  52. S Hess et al, Physica A 240, 126 (1997)

    Article  ADS  Google Scholar 

  53. J Delhommelle, J Petravic and D J Evans, J. Chem. Phys. 120, 6117 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

LS acknowledges fruitful discussion with Yitzhak Rabin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenin S Shagolsem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shagolsem, L.S. Energy polydisperse 2d Lennard–Jones fluid in the presence of flow field. Pramana - J Phys 96, 182 (2022). https://doi.org/10.1007/s12043-022-02435-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02435-7

Keywords

PACS

Navigation