Skip to main content
Log in

An approach based on the porous media model for multilayered flow in the presence of interfacial surfactants

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The current study deals with the linear stability of a fluid multilayered system in the presence of porous media. Fluids are subject to normal electric field, where there are insoluble surfactants contaminating the interfaces. The physical model consists of an inner layer sandwiched between two semi-infinite fluids. A single surface between two different fluid layers is studied as a limiting case, in which a small Reynolds number is covered. The objective of this work is to investigate the impact of viscosity and porosity properties on the linear growth rate and the sheet behaviour as a result of the interfacial surfactants. In the light of boundary constraints and geometry of the imposed system, the solutions of the hydrodynamic equations of motion lead to an implicit dispersion equation that basically depends on the growth rate along with the wave number. The physical parameters that control the fluid sheet strongly and significantly affect the shape of the waves, their amplitude and thus the stability profile of the liquid layers. Through the theoretical and analytical study, in addition to the numerical visualisations, the stability pictures are plotted and investigated. It is observed that both Marangoni and electric Weber numbers play opposite roles on the stability of the fluid sheet. This means that Marangoni number works to inhibit the growth rate while, the electric number encourages a stretching in the wave amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A B Mikishev and A A Nepomnyashchy, Microgravity Sci. Tech. 22, 415 (2010)

    Article  ADS  Google Scholar 

  2. J M Park, M A Hulsen and P D Anderson, Eur. Phys. J-Spec Top. 222, 199 (2013)

    Article  Google Scholar 

  3. T Hayat, M Imtiaz and A Alsaedi, Appl. Math. Mech. 375, 573 (2016)

    Article  Google Scholar 

  4. T Hayat, S Farooq, M Mustafa and B Ahmad, Results Phys. 7, 2000 (2017)

    Article  ADS  Google Scholar 

  5. K A Kumar, V Sugunamma and N Sandeep, Heat Transf. 48, 3968 (2019), https://doi.org/10.1002/htj.21577

    Article  Google Scholar 

  6. K A Kumar, V Sugunamma and N Sandeep, J. Therm. Anal. Calorim. 139, 3661 (2020), https://doi.org/10.1007/s10973-019-08694-8

    Article  Google Scholar 

  7. K A Kumar, V Sugunamma and N Sandeep, J. Therm. Anal. Calorim. 140, 2377 (2020), https://doi.org/10.1007/s10973-019-08977-0

    Article  Google Scholar 

  8. K A Kumar, J V R Reddy, V Sugunamma and N Sandeep, Alex. Eng. J. 57, 435 (2018), https://doi.org/10.1016/j.aej.2016.11.013

    Article  Google Scholar 

  9. K A Kumar, J V R Reddy, V Sugunamma and N Sandeep, Inter. J. Fluid Mech. Res. 46, 1 (2019), https://doi.org/10.1615/InterJFluidMechRes.2018025940

    Article  Google Scholar 

  10. M Iervolino, J P Pascal and A Vacca, J. Non-Newton Fluid Mech. 259, 111 (2018)

    Article  MathSciNet  Google Scholar 

  11. S A Alkharashi, K Al-Hamad and A Alrashidi, Adv. Stud. Theor. Phys. 12, 197 (2018), https://doi.org/10.12988/astp.2018.8521

  12. S A Alkharashi, A Assaf, K Al-Hamad and A Alrashidi, J. Appl. Fluid Mech. 12, 573 (2019), https://doi.org/10.29252/jafm.12.02.28618

    Article  Google Scholar 

  13. S A Alkharashi and M A Sirwah, J. Eng. Math. 130, 5 (2021), https://doi.org/10.1007/s10665-021-10160-0

    Article  Google Scholar 

  14. D Yadav, Pramana – J . Phys. 96, 19 (2022), https://doi.org/10.1007/s12043-021-02242-6

    Article  ADS  Google Scholar 

  15. A K Kempannagari, R R Buruju, S Naramgari and S Vangala, Heat Transf. 49, 3575 (2020), https://doi.org/10.1002/htj.21789

    Article  Google Scholar 

  16. K A Kumar, V Sugunamma, N Sandeep and M T Mustafa, Sci. Rep. 9, 14706 (2019), https://doi.org/10.1038/s41598-019-51242-5

    Article  ADS  Google Scholar 

  17. S K Mehta, S Pati and L Baranyi, Case Stud. Therm. Eng. 31, 101796 (2022), https://doi.org/10.1016/j.csite.2022.101796

  18. A K Verma, A K Gautam, K U Bhattacharyya, A Banerjee and A J Chamkha, Pramana – J. Phys, 95, 173 (2021), https://doi.org/10.1007/s12043-021-02215-9

  19. S Pal and A Samanta, Phys. Fluids 33, 123107 (2021), https://doi.org/10.1063/5.0074864

    Article  ADS  Google Scholar 

  20. K A Kumar, V Sugunamma, N Sandeep and J V R Reddy, Heat Transf. Res. 50, 1141 (2019), https://doi.org/10.1615/HeatTransRes.2018026700

    Article  Google Scholar 

  21. S Agarwal and B S Bhadauria, Appl. Nanosci. 4, 935 (2014)

    Article  ADS  Google Scholar 

  22. R Barros and W Choi, Phys. Fluids 26, 124107 (2014)

    Article  ADS  Google Scholar 

  23. M A Sirwah and S A Alkharashi, Fluid Dyn. 56, 291 (2021), https://doi.org/10.1134/S0015462821020099

  24. S A Alkharashi, Stability of viscous fluids in the presence of the porosity effect, Ph.D. thesis (Tanta University, 2012)

  25. S Kwak and C Pozrikidis, Int. Multiphase Flow 27, 1 (2001)

    Article  Google Scholar 

  26. I Tlili, M T Mustafa, K A Kumar and N Sandeep, Sci. Rep. 10, 6677 (2020), https://doi.org/10.1038/s41598-020-63708-y

    Article  ADS  Google Scholar 

  27. M Nazeer, N Ali, F Ahmad and M Latif, Pramana – J. Phys. 94, 44 (2020), https://doi.org/10.1007/s12043-019-1910-4

  28. K A Kumar, V Sugunamma and N Sandeep, J Non-Equilib. Thermodyn. 43, 327 (2018), https://doi.org/10.1515/jnet-2018-0022

    Article  Google Scholar 

  29. Sunil, R C Sharma and R S Chandel, Z. Naturforsch. 57a, 955 (2002)

  30. Z Liu, G Brenn and F Durst, J. Non-Newton Fluid Mech. 78, 133 (1998)

    Article  Google Scholar 

  31. O Ozen, N Aubry, D T Papageorgiou and P G Petropoulos, Electrochim. Acta 51, 5316 (2006)

    Article  Google Scholar 

  32. M Khan, M Saleem, C Fetecau and T Hayat, Int. J. Non-Linear Mech. 42, 1224 (2007)

  33. Z Hussain, R Zeesahan, M Shahzad, M Ali, F Sultan, A M Anter, H Zhang and N Khan, Pramana – J. Phys. 95, 27 (2021), https://doi.org/10.1007/s12043-020-02043-3

    Article  ADS  Google Scholar 

  34. B Wang, Y Liu and L Li, Numer. Heat Tr. Appl. 77, 343 (2020), https://doi.org/10.1080/10407782.2019.1693195

    Article  ADS  Google Scholar 

  35. F M Azizul, A I Alsabery, I Hashim and A J Chamkha, Appl. Math. Comput. 393, 125754 (2021)

    Google Scholar 

  36. P Kumar and G J Singh, Rom. J. Phys. 51, 927 (2006)

  37. S A Alkharashi and Y Gamiel, Theor. Math. Phys. 191, 580 (2017), https://doi.org/10.1134/S0040577917040092

    Article  Google Scholar 

  38. J Ahuja and P Girotra, Pramana – J. Phys. 95, 25 (2021), https://doi.org/10.1007/s12043-020-02046-0

    Article  ADS  Google Scholar 

  39. K Zakaria and S A Alkharashi, Acta Mech. 228, 2555 (2017), https://doi.org/10.1007/s00707-017-1847-y

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by The Research Programme of Public Authority for Applied Education and Training in Kuwait, Project No (TS-21-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameh A Alkharashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkharashi, S.A., Al-Hamad, K. & Alrashidi, A. An approach based on the porous media model for multilayered flow in the presence of interfacial surfactants. Pramana - J Phys 96, 140 (2022). https://doi.org/10.1007/s12043-022-02385-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02385-0

Keywords

PACS Nos

Navigation