Skip to main content
Log in

Speckle interferometric probing of intrafilm thermal-induced particle dynamics in RF-sputtered MoO3 films

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The study of surface morphology is an unavoidable part of thin-film characterisation. The present paper reports the application of electronic speckle interferometry in understanding the quality of thin films taking radio frequency sputtered MoO3 films, prepared at two argon pressure 0.03 mbar and 0.05 mbar, as an example. The intrafilm thermal-induced particle dynamics on thin films’ surface morphology are studied using the cross-correlation, inertia moment, displacement vector, lacunarity and multifractal analyses. The study reveals that not only the argon pressure in the chamber but also the heating of the films significantly influence the surface morphology and quality of the film. The displacement vector, lacunarity and multifractal analyses also reveal that as-grown films prepared at 0.03 mbar argon pressure (M0.03) are better than as-grown films prepared at 0.05 mbar argon pressure (M0.05). Thus, the cross-correlation, inertia moment, displacement vector, lacunarity and multifractal analyses can effectively be used as surrogate methods for understanding the surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y S Rim, J. Inf. Disp. 21, 203 (2020)

    Article  Google Scholar 

  2. N Sureshkumar and A Dutta, Multilayer thin films – Versatile applications for materials engineering edited by S Basu (Intech Open, London, 2020) Vol. 1, p. 1

    Google Scholar 

  3. L Liang, J Zhang, Y Zhou, J Xie, X Zhang, M. Guan, B Pan and Y Xie, Sci. Rep. 3, 1936 (2013)

    Article  ADS  Google Scholar 

  4. M D Irwin, D B Buchholz, A W Hains, R P H. Chang and T J Marks, Proc. Natl. Acad. Sci. 105, 2783 (2008)

    Article  ADS  Google Scholar 

  5. K P Remya, D Prabhu, R J Joseyphus, A C Bose, C Viswanathan and N Ponpandian, Mater. Des. 192, 108694 (2020)

    Article  Google Scholar 

  6. N M A Hadia, M Alzaid and W S Mohamed, Mater. Charact. 165, 110392 (2020)

    Article  Google Scholar 

  7. N Ghobadi, F Hafezi, S Naderi, F Amiri, C Luna, A Arman, R Shakoury, Ş Ţălu and S Rezaee, Semiconductors 53, 1751 (2019)

    Article  ADS  Google Scholar 

  8. L G Gerling, S Mahato, A Morales-Vilches, G Masmitja, P Ortega, C Voz, R Alcubilla and J Puigdollers, Sol. Energy Mater. Sol. Cells 145, 109 (2016)

    Article  Google Scholar 

  9. A Sawa, Mater. Today 11, 28 (2008)

    Article  Google Scholar 

  10. S Fang, D Bresser and S Passerini, Adv. Energy Mater. 10, 1902485 (2020)

    Article  Google Scholar 

  11. F Song, L Bai, A Moysiadou, S Lee, C Hu, L Liardet and X Hu, J. Am. Chem. Soc. 140, 7748 (2018)

    Article  Google Scholar 

  12. J Geissbühler et al, Appl. Phys. Lett. 107, 081601 (2015)

    Article  ADS  Google Scholar 

  13. Y Liu, S Yang, Y Lu, N V Podval’naya, W Chen and G S Zakharova, Appl. Surf. Sci. 359, 114 (2015)

    Article  ADS  Google Scholar 

  14. L Huang, B Yao, J Sun, X Gao, J Wu, J Wan, T Li, Z Hu and J Zhou, J. Mater. Chem. A 5, 2897 (2017)

    Article  Google Scholar 

  15. Y J Lee, J Yi, G F Gao, H Koerner, K Park, J Wang, K Luo, R A Vaia and J W P Hsu, Adv. Energy Mater. 2, 1193 (2012)

    Article  Google Scholar 

  16. H Li, J Li, C Hou, D Ho, Q Zhang, Y Li and H Wang, Adv. Mater. Technol. 2, 1700047 (2017)

    Article  Google Scholar 

  17. C V Ramana and C M Julien, Chem. Phys. Lett. 428, 114 (2006)

    Article  ADS  Google Scholar 

  18. A Chithambararaj, N Rajeswari Yogamalar and A C Bose, Cryst. Growth Des. 16, 1984 (2016)

    Article  Google Scholar 

  19. S Dayal and C S Kumar, Mater. Res. Express 3,106405 (2016)

    Article  ADS  Google Scholar 

  20. M Rao, K Ravindranadh, A Kasturi and M Shekhawat, Res. J. Recent Sci. ISSN. 2277, 2502 (2013)

    Google Scholar 

  21. R Yordanov, S Boyadjiev, V Georgieva and L Vergov, J. Phys. Conf. Ser. 514, 012040 (2014)

    Article  Google Scholar 

  22. M F Al-Kuhaili, S M A Durrani and I A Bakhtiari, Appl. Phys. A 98, 609 (2010)

    Article  ADS  Google Scholar 

  23. T Siciliano, A Tepore, E Filippo, G Micocci and M Tepore, Mater. Chem. Phys. 114, 687 (2009)

    Article  Google Scholar 

  24. D Sinkeviciute, J Baltrusaitis and N Dukstiene, J. Solid State Electrochem. 15, 711 (2011)

    Article  Google Scholar 

  25. G Sanal Kumar, N Illyaskutty, S Suresh, R S Sreedharan, V U Nayar and V P M Pillai, J. Alloys Compd. 698, 215 (2017)

  26. K Ellmer, J. Phys. D. Appl. Phys. 33, R17 (2000)

    Article  ADS  Google Scholar 

  27. V Nirupama and S Uthanna, J. Mater. Sci. Mater. Electron. 21, 45 (2010)

    Article  Google Scholar 

  28. A L Sonera, K V Chauhan, D B Chauhan, N S Makwana, D P Dave and S K Raval, AIP Conf. Proc. 1953, 030133 (2018)

    Article  Google Scholar 

  29. X Fan, G Fang, P Qin, N Sun, N Liu, Q Zheng, F Cheng, L Yuan and X Zhao, J. Phys. D. Appl. Phys. 44, 045101 (2011)

    Google Scholar 

  30. N Illyaskutty, S Sreedhar, G Sanal Kumar, H Kohler, M Schwotzer, C Natzeck and V P M Pillai, Nanoscale 6, 13882 (2014)

    Article  ADS  Google Scholar 

  31. S R Chalana, V S Kavitha, P Srinivasan, S R Ahamed, G Tiwari and V P M Pillai, Mater. Today Proc. 29, 917 (2020)

    Article  Google Scholar 

  32. R Balamurugan and S Muruganand, Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 4, 4559 (2015)

    Google Scholar 

  33. M N Durakbasa, P H Osanna and P Demircioglu, Measurement 44, 1986 (2011)

    Article  ADS  Google Scholar 

  34. A Mujeeb, V U Nayar and V R Ravindran, Insight-Non-Destructive Test. Cond. Monit. 48, 275 (2006)

    Article  Google Scholar 

  35. L Yang, X Xie, L Zhu, S Wu and Y Wang, Chin. J. Mech. Eng. 27, 1 (2014)

    Article  Google Scholar 

  36. R Ritter, K Galanulis, D Winter and B Breuckmann, Opt. Lasers Eng. 26, 283 (1997)

    Article  Google Scholar 

  37. P P Padghan and K M Alti, Res. Rev. J. Phys. 4, 1 (2018)

    Google Scholar 

  38. C Dudescu, J Naumann, M Stockmann and S Nebel, Strain 42, 197 (2006)

    Article  Google Scholar 

  39. X Y Lian and E Andreas, Opt. Eng. 42, 1257 (2003)

    Article  Google Scholar 

  40. P Mrozek, E Mrozek and A Werner, Acta Mech. Autom. 12, 135 (2018)

    Google Scholar 

  41. A Oulamara, G Tribillon and J Duvernoy, J. Mod. Opt. 36, 165 (1989)

    Article  ADS  Google Scholar 

  42. R Retheesh, B Samuel, P Radhakrishnan, V P N Nampoori and A Mujeeb, J. Pure Appl. Ind. Phys. 6, 65 (2016)

    Google Scholar 

  43. B Samuel, R Retheesh, M Z Ansari, V P N Nampoori, P Radhakrishnan and A Mujeeb, Laser Phys. 27, 105601 (2017)

    Article  ADS  Google Scholar 

  44. R Arizaga, M Trivi and H Rabal, Opt. Laser Technol. 31, 163 (1999)

    Article  ADS  Google Scholar 

  45. Z Liu and J Gao, Opt. Express 19, 17469 (2011)

    Article  ADS  Google Scholar 

  46. V Raj, M S Swapna and S Sankararaman, Commun. Theor. Phys. 73, 015402 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Sankararaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soumya, S., Sreejyothi, S., Raj, V. et al. Speckle interferometric probing of intrafilm thermal-induced particle dynamics in RF-sputtered MoO3 films. Pramana - J Phys 96, 131 (2022). https://doi.org/10.1007/s12043-022-02372-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02372-5

Keywords

PACS Nos

Navigation