Skip to main content
Log in

Evolution of fractal dimension in pulsed laser deposited MoO3 film with ablation time and annealing temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The multifractal analysis is a potential method for assessing thin film surface morphology and its changes due to different deposition conditions and post-deposition treatments. In this work, the multifractal analysis is carried out to understand the surface morphology—root mean square (RMS) surface roughness—of nanostructured MoO3 films prepared by pulsed laser deposition technique by varying the ablation time and post-deposition annealing. The XRD analysis shows the evolution of crystalline nature with annealing temperature. The XRD pattern of all the annealed films shows the characteristic peak of the orthorhombic MoO3 phase. The FESEM and AFM analysis reveals the morphological modification with ablation time and annealing temperature. The multifractal analysis of the AFM images shows that the box—counting, information and correlation dimension varies with the annealing temperature. The study also reveals the inverse relation between the fractal dimension and the RMS surface roughness due to the annealing induced particle size variation and reorientation. The fractal dimension's evolution in the pulsed laser deposited MoO3 film with ablation time and annealing temperature is also investigated. Thus, the study reveals the potential of multifractal analysis in the thin film surface characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Ji, W. Zeng, Y. Li, Nanoscale 11, 22664 (2019)

    Article  Google Scholar 

  2. P. Riente, T. Noël, Catal. Sci. Technol. 9, 5186 (2019)

    Google Scholar 

  3. R. Argazzi, N.Y.M. Iha, H. Zabri, F. Odobel, C.A. Bignozzi, Coord. Chem. Rev. 248, 1299 (2004)

    Article  Google Scholar 

  4. T.-W. Ng, Q.-D. Yang, H.-W. Mo, M.-F. Lo, W.-J. Zhang, S. Lee, Adv. Opt. Mater. 1, 699 (2013)

    Article  Google Scholar 

  5. F. Wang, X. Qiao, T. Xiong, D. Ma, Org. Electron. 9, 985 (2008)

    Article  Google Scholar 

  6. J. Bullock, A. Cuevas, T. Allen, C. Battaglia, Appl. Phys. Lett. 105, 232109 (2014)

    Article  ADS  Google Scholar 

  7. H. Li, L. McRae, C.J. Firby, M. Al-Hussein, A.Y. Elezzabi, Nano Energy 47, 130 (2018)

    Article  Google Scholar 

  8. J. Wang, Q. Zhou, S. Peng, L. Xu, W. Zeng, Front. Chem (2020). https://doi.org/10.3389/fchem.2020.00339

    Article  Google Scholar 

  9. J. Han, P. Liu, Y. Ito, X. Guo, A. Hirata, T. Fujita, M. Chen, Nano Energy 45, 273 (2018)

    Article  Google Scholar 

  10. T. Ivanova, M. Surtchev, K. Gesheva, Mater. Lett. 53, 250 (2002)

    Article  Google Scholar 

  11. R. Sivakumar, V. Vijayan, V. Ganesan, M. Jayachandran, C. Sanjeeviraja, Smart Mater. Struct. 14, 1204 (2005)

    Article  ADS  Google Scholar 

  12. L. Chibane, M.S. Belkaid, M. Pasquinelli, H.D. Habak, J.J. Simon, D. Hocine, O. Boundia, Renew. Energy Power Qual. J. (2012). https://doi.org/10.24084/repqj10.840

    Article  Google Scholar 

  13. I. Navas, R. Vinodkumar, K.J. Lethy, A.P. Detty, V. Ganesan, V. Sathe, V.P.M. Pillai, J. Phys. D. Appl. Phys. 42, 175305 (2009)

    Article  ADS  Google Scholar 

  14. M.F. Al-Kuhaili, S.M.A. Durrani, I.A. Bakhtiari, Appl. Phys. A 98, 609 (2010)

    Article  ADS  Google Scholar 

  15. J. John, S.R. Chalana, R. Prabhu, V.P.M. Pillai, Appl. Phys. A 125, 155 (2019)

    Article  ADS  Google Scholar 

  16. M.A. Arvizu, M. Morales-Luna, M. Pérez-González, E. Campos-Gonzalez, O. Zelaya-Angel, S.A. Tomás, Int. J. Thermophys. 38, 51 (2017)

    Article  ADS  Google Scholar 

  17. T. He, J. Yao, J. Photochem. Photobiol. C Photochem. Rev. 4, 125 (2003)

    Article  Google Scholar 

  18. D. Wu, R. Shen, R. Yang, W. Ji, M. Jiang, W. Ding, L. Peng, Sci. Rep. 7, 44697 (2017)

    Article  ADS  Google Scholar 

  19. K. Inzani, M. Nematollahi, F. Vullum-Bruer, T. Grande, T.W. Reenaas, S.M. Selbach, Phys. Chem. Chem. Phys. 19, 9232 (2017)

    Article  Google Scholar 

  20. I. Navas, R. Vinodkumar, K.J. Lethy, M. Satyanarayana, V. Ganesan, V.P.M. Pillai, J. Nanosci. Nanotechnol. 9, 5254 (2009)

    Article  Google Scholar 

  21. I.A. de Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, K. Kalantar-zadeh, Adv. Mater. 29, 1701619 (2017)

    Article  Google Scholar 

  22. P.-R. Huang, Y. He, C. Cao, Z.-H. Lu, Sci. Rep. 4, 7131 (2015)

    Article  Google Scholar 

  23. K. Ghosh, R.K. Pandey, Mater. Sci. Semicond. Process. 106, 104771 (2020)

    Article  Google Scholar 

  24. P. S. Addison, Fractals and Chaos: An Illustrated Course (CRC Press, 1997).

  25. S. Soumya, M.S. Swapna, V. Raj, V.P.M. Pillai, S. Sankararaman, Eur. Phys. J. Plus 132, 551 (2017)

    Article  Google Scholar 

  26. M.S. Swapna, S. Sreejyothi, V. Raj, S. Sankararaman, Braz. J. Phys. 51(3), 731–737 (2021)

    Article  ADS  Google Scholar 

  27. V. Raj, M.S. Swapna, S. Sankararaman, Commun. Theor. Phys. 73, 015402 (2021)

    Article  ADS  Google Scholar 

  28. Z. Chen, D. Pan, B. Zhao, G. Ding, Z. Jiao, M. Wu, C.-H. Shek, L.C.M. Wu, J.K.L. Lai, ACS Nano 4, 1202 (2010)

    Article  Google Scholar 

  29. R.P. Yadav, T. Kumar, V. Baranwal, M. Kumar, P.K. Priya, S.N. Pandey, A.K. Mittal, J. Appl. Phys. 121, 055301 (2017)

    Article  ADS  Google Scholar 

  30. C. Zhang, J. Wu, D. Fu, Appl. Surf. Sci. 313, 750 (2014)

    Article  Google Scholar 

  31. B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, 1956).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Ethics declarations

Conflict of interest

The authors do not have any potential conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soumya, S., Raj, V., Swapna, M.S. et al. Evolution of fractal dimension in pulsed laser deposited MoO3 film with ablation time and annealing temperature. Appl. Phys. A 127, 521 (2021). https://doi.org/10.1007/s00339-021-04676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04676-6

Keywords

Navigation