Skip to main content
Log in

Study of anisotropic compact stars in \(f({\mathcal {R}},{\mathcal {T}},{\mathcal {R}}_{\chi \xi }{\mathcal {T}}^{\chi \xi })\) gravity

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper aims to examine the composition of various spherically symmetric star models which are coupled with anisotropic configuration in \(f({\mathcal {R}},{\mathcal {T}},{\mathcal {Q}})\) gravity, where \({\mathcal {Q}}={\mathcal {R}}_{\chi \xi }{\mathcal {T}}^{\chi \xi }\). We discuss the physical features of compact objects by employing bag model equation of state and construct the modified field equations in terms of Krori–Barua ansatz involving the unknowns (ABC). The observational data of 4U 1820-30, Vela X-I, SAX J 1808.4-3658, RXJ 1856-37 and Her X-I are used to calculate these unknowns and bag constant \(\mathfrak {B}_{{\mathfrak {c}}}\). Further, we observe the behaviour of energy density, radial and tangential pressure as well as anisotropy through graphical interpretation for a viable model \({\mathcal {R}}+\varrho {\mathcal {Q}}\) of this gravity. For a particular value of the coupling constant \(\varrho \), we study the behaviour of mass, compactness, red-shift and the energy bounds. The stability of the considered stars is also checked by using two criteria. We conclude that our structure developed in this gravity is in good agreement with all the physical requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S Nojiri and S D Odintsov, Phys. Rev. D 68, 123512 (2003)

    Article  ADS  Google Scholar 

  2. G Cognola, E Elizalde, S Nojiri, S D Odintsov and S Zerbini, J. Cosmol. Astropart. Phys. 2005, 010 (2005)

    Article  Google Scholar 

  3. Y S Song, W Hu and I Sawicki, Phys. Rev. D 75, 044004 (2007)

    Article  ADS  Google Scholar 

  4. S Capozziello, M De Laurentis, S D Odintsov and A Stabile, Phys. Rev. D 83, 064004 (2011)

    Article  ADS  Google Scholar 

  5. M Sharif and H R Kausar, J. Cosmol. Astropart. Phys. 2011, 022 (2011)

    Article  Google Scholar 

  6. S Arapoğlu, C Deliduman and K Y Ekşi, J. Cosmol. Astropart. Phys. 2011, 020 (2011)

    Article  Google Scholar 

  7. R Goswami, A M Nzioki, S D Maharaj and S G Ghosh, Phys. Rev. D 90, 084011 (2014)

    Article  ADS  Google Scholar 

  8. M Sharif and Z Yousaf, Astropart. Phys. 56, 19 (2014)

    Article  ADS  Google Scholar 

  9. A V Astashenok, S Capozziello and S D Odintsov, Phys. Rev. D 89, 103509 (2014)

    Article  ADS  Google Scholar 

  10. O Bertolami, C G Boehmer, T Harko and F S N Lobo, Phys. Rev. D 75, 104016 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. T Harko, F S N Lobo, S Nojiri and S D Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  12. M Sharif and M Zubair, J. Cosmol. Astropart. Phys. 2012, 028 (2012)

    Article  Google Scholar 

  13. H Shabani and M Farhoudi, Phys. Rev. D 88, 044048 (2013)

    Article  ADS  Google Scholar 

  14. P H R S Moraes, J D V Arbañil and M Malheiro, J. Cosmol. Astropart. Phys. 2016, 005 (2016)

    Article  Google Scholar 

  15. M Sharif and A Siddiqa, Eur. Phys. J. Plus 132, 1 (2017)

    Article  Google Scholar 

  16. A Das, S Ghosh, B K Guha, S Das, F Rahaman and S Ray, Phys. Rev. D 95, 124011 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Z Haghani, T Harko, F S N Lobo, H R Sepangi and S Shahidi, Phys. Rev. D 88, 044023 (2013)

    Article  ADS  Google Scholar 

  18. M Sharif and M Zubair, J. High Energy Phys. 2013, 79 (2013)

    Article  Google Scholar 

  19. M Sharif and M Zubair, J. Cosmol. Astropart. Phys. 2013, 042 (2013)

    Article  Google Scholar 

  20. S D Odintsov and D Sáez-Gómez, Phys. Lett. B 725, 437 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. I Ayuso, J B Jiménez and A De la Cruz-Dombriz, Phys. Rev. D 91, 104003 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. E H Baffou, M J S Houndjo and J Tosssa, Astrophys. Space Sci. 361, 376 (2016)

    Article  ADS  Google Scholar 

  23. M Sharif and A Waseem, Eur. Phys. J. Plus 131, 1 (2016)

    Article  ADS  Google Scholar 

  24. M Sharif and A Waseem, Can. J. Phys. 94, 1024 (2016)

    Article  ADS  Google Scholar 

  25. Z Yousaf, M Z Bhatti and T Naseer, Eur. Phys. J. Plus 135, 353 (2020)

    Article  Google Scholar 

  26. Z Yousaf, M Z Bhatti and T Naseer, Phys. Dark Universe 28, 100535 (2020)

    Article  Google Scholar 

  27. Z Yousaf, M Z Bhatti and T Naseer, Int. J. Mod. Phys. D 29, 2050061 (2020)

    Article  ADS  Google Scholar 

  28. Z Yousaf, M Z Bhatti and T Naseer, Ann. Phys. 420, 168267 (2020)

    Article  Google Scholar 

  29. Z Yousaf, M Z Bhatti, T Naseer and I Ahmad, Phys. Dark Universe 29, 100581 (2020)

    Article  Google Scholar 

  30. Z Yousaf, M Y Khlopov, M Z Bhatti and T Naseer, Mon. Not. R. Astron. Soc. 495, 4334 (2020)

    Article  ADS  Google Scholar 

  31. M Sharif and T Naseer, Chin. J. Phys. 73, 179 (2021)

    Article  Google Scholar 

  32. T Naseer and M Sharif, Universe 8, 62 (2022)

    Article  ADS  Google Scholar 

  33. E Witten, Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  34. A R Bodmer, Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  35. I Bombaci, Phys. Rev. C 55, 1587 (1997)

    Article  ADS  Google Scholar 

  36. L Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  37. L Herrera and N O Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  38. T Harko and M K Mak, Ann. Phys. 11, 3 (2002)

    Article  Google Scholar 

  39. S K M Hossein, F Rahaman, J Naskar, M Kalam and S Ray, Int. J. Mod. Phys. D 21, 1250088 (2012)

    Article  ADS  Google Scholar 

  40. M Kalam, F Rahaman, S Molla and S K M Hossein, Astrophys. Space Sci. 349, 865 (2014)

    Article  ADS  Google Scholar 

  41. B C Paul and R Deb, Astrophys. Space Sci. 354, 421 (2014)

    Article  ADS  Google Scholar 

  42. G H Bordbar and A R Peivand, Res. Astron. Astrophys. 11, 851 (2011)

    Article  ADS  Google Scholar 

  43. P Haensel, J L Zdunik and R Schaefer, Astron. Astrophys. 160, 121 (1986)

    ADS  Google Scholar 

  44. K S Cheng, Z G Dai and T Lu, Int. J. Mod. Phys. D 7, 139 (1998)

    Article  ADS  Google Scholar 

  45. P B Demorest, T Pennucci, S M Ransom, M S E Roberts and J W T Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  46. F Rahaman, K Chakraborty, P K F Kuhfittig, G C Shit and M Rahman, Eur. Phys. J. C 74, 1 (2014)

    Google Scholar 

  47. P Bhar, Astrophys. Space Sci. 357, 1 (2015)

    Article  MathSciNet  Google Scholar 

  48. J D V Arbañil and M Malheiro, AIP Conf. Proc. 1693, 030007 (2015)

    Google Scholar 

  49. D Deb, S R Chowdhury, S Ray, F Rahaman and B K Guha, Ann. Phys. 387, 239 (2017)

    Article  ADS  Google Scholar 

  50. D Deb, M Khlopov, F Rahaman, S Ray and B K Guha, Eur. Phys. J. C 78, 465 (2018)

    Article  ADS  Google Scholar 

  51. M Sharif and A Waseem, Eur. Phys. J. C 78, 868 (2018)

    Article  ADS  Google Scholar 

  52. M Sharif and A Waseem, Int. J. Mod. Phys. D 28, 1950033 (2019)

    Article  ADS  Google Scholar 

  53. M Sharif and A Waseem, Chin. J. Phys. 63, 92 (2020)

    Article  Google Scholar 

  54. M Sharif and A Majid, Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  55. M Sharif and A Majid, Universe 6, 124 (2020)

    Article  ADS  Google Scholar 

  56. M Sharif and A Majid, Astrophys. Space Sci. 366, 1 (2021)

    Article  Google Scholar 

  57. N K Glendenning, Phys. Rev. D 46, 1274 (1992)

    Article  ADS  Google Scholar 

  58. M Kalam, A A Usmani, F Rahaman, S M Hossein, I Karar and R Sharma, Int. J. Theor. Phys. 52, 3319 (2013)

    Article  Google Scholar 

  59. J D V Arbañil and M Malheiro, J. Cosmol. Astropart. Phys. 2016, 012 (2016)

    Article  Google Scholar 

  60. K D Krori and J Barua, J. Phys. A: Math. Gen. 8, 508 (1975)

    Article  ADS  Google Scholar 

  61. K Lake, Phys. Rev. D 67, 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  62. M Dey, I Bombaci, J Dey, S Ray and B C Samanta, Phys. Lett. B 438, 123 (1998)

    Article  ADS  Google Scholar 

  63. X D Li, I Bombaci, M Dey, J Dey and E P J Van Den Heuvel, Phys. Rev. Lett. 83, 3776 (1999)

    Article  ADS  Google Scholar 

  64. H A Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  65. B V Ivanov, Phys. Rev. D 65, 104011 (2002)

    Article  ADS  Google Scholar 

  66. H Heintzmann and W Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sharif.

Appendix A

Appendix A

The value of adiabatic index in terms of Krori–Barua solution takes the form

$$\begin{aligned} \Gamma&=-\Bigg [3\left\{ Ar^2\left( 4\varrho \mathfrak {B}_{{\mathfrak {c}}} \left( Br^2+2\right) +1\right) \right. \\&\quad \!\!\left. -2\mathfrak {B}_{{\mathfrak {c}}} \left( \varrho +\mathrm {e}^{Ar^2} \left( 8\pi r^2-\varrho \right) \right) +Br^2 \times (1-8\varrho \mathfrak {B}_{{\mathfrak {c}}})\right\} \Bigg ]^{-1}\\&\quad \times [2r^2\left\{ \varrho A^2\mathfrak {B}_{{\mathfrak {c}}} r^2+A\left( \varrho \mathfrak {B}_{{\mathfrak {c}}} \left( 2Br^2+5\right) -2\right) \right. \\&\quad \left. -B\left( 2+\varrho \mathfrak {B}_{{\mathfrak {c}}} \times \left( 1+3Br^2\right) \right) \right\} ]. \end{aligned}$$

The term \(|v_{s\bot }^2-v_{sr}^2|\) in modified gravity becomes

$$\begin{aligned}&|v_{s\bot }^2-v_{sr}^2|\\&\quad =\frac{1}{12}\bigg |\bigg [\big (\varrho \big (-Ar^2\big (Br^2+2\big )+B^2r^4+3Br^2+1\big )\\&\qquad +\mathrm {e}^{Ar^2}\big (r^2-\varrho \big )\big )^2\\&\qquad \times \big \{\varrho A^3r^4\big (8\varrho \mathfrak {B}_{{\mathfrak {c}}}+2\mathfrak {B}_{{\mathfrak {c}}} \mathrm {e}^{Ar^2}\big (r^2-\varrho \big )+1\big )\\&\qquad +A^2r^2\big (\mathrm {e}^{Ar^2} \big (2\varrho (2-3\varrho \mathfrak {B}_{{\mathfrak {c}}})\\&\qquad +4\varrho \mathfrak {B}_{{\mathfrak {c}}}Br^4 -4r^2\big (-2\varrho \mathfrak {B}_{{\mathfrak {c}}}\\&\qquad +\varrho ^2\mathfrak {B}_{{\mathfrak {c}}}B+1\big )\big ) +\varrho \big (Br^2(11-12\varrho \mathfrak {B}_{{\mathfrak {c}}}) -4\varrho \mathfrak {B}_{{\mathfrak {c}}}\big )\big )\\&\qquad +A\big (\varrho \big (-B^2\big )r^4\big (36\varrho \mathfrak {B}_{{\mathfrak {c}}}+6\mathfrak {B}_{{\mathfrak {c}}} \mathrm {e}^{Ar^2}\big (r^2-\varrho \big )-7\big )\\&\qquad -2Br^2\big (4\varrho ^2\mathfrak {B}_{{\mathfrak {c}}} +\mathrm {e}^{Ar^2}\big (r^2(3\varrho \mathfrak {B}_{{\mathfrak {c}}}+2) -\varrho (5\varrho \mathfrak {B}_{{\mathfrak {c}}}+2)\big )\big )\\&\qquad +(5\varrho \mathfrak {B}_{{\mathfrak {c}}}-2) \big (\mathrm {e}^{Ar^2}-1\big ) 2\varrho \big )\\&\qquad +\varrho B\big (2\varrho \mathfrak {B}_{{\mathfrak {c}}} +2\mathrm {e}^{Ar^2}\big (-\varrho \mathfrak {B}_{{\mathfrak {c}}} +3\mathfrak {B}_{{\mathfrak {c}}}Br^2\big (r^2-2\varrho \big )-2\big )\\&\qquad +3B^2r^4(8\varrho \mathfrak {B}_{{\mathfrak {c}}}-1) +12\varrho \mathfrak {B}_{{\mathfrak {c}}}Br^2+4\big )\big \}\bigg ]^{-1}\\&\qquad \times \bigg [2\big (\mathrm {e}^{Ar^2}\big (r^2-\varrho \big )+\big (B^2r^4\\&\qquad +3Br^2-A\big (Br^2+2\big )r^2+1\big )\varrho \big )\big (4\mathrm {e}^{Ar^2}\big (r^2-\varrho \big )\\&\qquad +\big (-A^2r^4+3B^2r^4 \!+\! 17Br^2-A\big (10Br^2+21\big )r^2\!+\! 4\big )\varrho \big )\\&\qquad \times \big \{r^2\varrho \big (3B(22\varrho \mathfrak {B}_{{\mathfrak {c}}}+1) r^2+88\varrho \mathfrak {B}_{{\mathfrak {c}}}\\&\qquad -4\mathrm {e}^{Ar^2}\big (3r^2+\varrho \big ) \mathfrak {B}_{{\mathfrak {c}}}+14\big )A^3\\&\qquad +\big (\varrho \big (3B^2(10\varrho \mathfrak {B}_{{\mathfrak {c}}}+9) r^4+2Br^2(31 -36\varrho \mathfrak {B}_{{\mathfrak {c}}})\\&\qquad -8\varrho \mathfrak {B}_{{\mathfrak {c}}}+11\big ) -4\mathrm {e}^{Ar^2}\big (Br^4+(-B\varrho +5\mathfrak {B}_{{\mathfrak {c}}}\varrho +1)r^2\\&\qquad +\varrho (2\varrho \mathfrak {B}_{{\mathfrak {c}}}-1)\big )\big ) A^2+\big (4\mathrm {e}^{Ar^2}\big (B^2\big (r^2-\varrho \big ) (\varrho \mathfrak {B}_{{\mathfrak {c}}}+1)r^2\\&\qquad -B\varrho +\varrho \mathfrak {B}_{{\mathfrak {c}}}-1\big ) -B\varrho \big (39B^2(2\varrho \mathfrak {B}_{{\mathfrak {c}}}+1) r^4\\&\qquad +2B(64\varrho \mathfrak {B}_{{\mathfrak {c}}}+55)r^2 +8\varrho \mathfrak {B}_{{\mathfrak {c}}}+69\big )\big )A\\&\qquad +B\big (\mathrm {e}^{Ar^2}\big (4B\big (2r^2-\varrho \big ) (\varrho \mathfrak {B}_{{\mathfrak {c}}}+1)+8\big )\\&\qquad +B\varrho \big (9B^2(6\varrho \mathfrak {B}_{{\mathfrak {c}}}+1) r^4+2B(28\varrho \mathfrak {B}_{{\mathfrak {c}}}+33)r^2\\ \end{aligned}$$
$$\begin{aligned}&\qquad +6(\varrho \mathfrak {B}_{{\mathfrak {c}}}+7)\big )\big )\big \} r^2-2\big (\mathrm {e}^{Ar^2}\big (A\big (r^2-\varrho \big )+1\big )\\&\qquad +\big (B\big (2Br^2+3\big )-2A\big (Br^2+1\big )\big )\varrho \big ) \big (4\mathrm {e}^{Ar^2}\big (r^2-\varrho \big )\\&\qquad +\big (-A^2r^4+3B^2r^4+17Br^2-A\\&\qquad \times \big (10Br^2+21\big )r^2+4\big )\varrho \big )\\&\qquad \times \big \{A^3\varrho \big (B(22\varrho \mathfrak {B}_{{\mathfrak {c}}}+1) r^2+44\varrho \mathfrak {B}_{{\mathfrak {c}}}+7\big )r^4\\&\qquad +A^2\varrho \big (B^2(10\varrho \mathfrak {B}_{{\mathfrak {c}}}+9)r^4\\&\qquad +B(31-36\varrho \mathfrak {B}_{{\mathfrak {c}}})r^2 -8\varrho \mathfrak {B}_{{\mathfrak {c}}}-4\big (3r^2+\varrho \big )\\&\qquad \times \mathfrak {B}_{{\mathfrak {c}}}\mathrm {e}^{Ar^2}+11\big ) r^2+B\big (4\mathrm {e}^{Ar^2}\big (r^2-\varrho \big )\\&\qquad \times \big (B(\varrho \mathfrak {B}_{{\mathfrak {c}}}+1)r^2+2\big ) +\varrho \big (3B^3r^6\\&\qquad \times (6\varrho \mathfrak {B}_{{\mathfrak {c}}}+1) +B^2(28\varrho \mathfrak {B}_{{\mathfrak {c}}}+33)r^4\\&\qquad +6B(\varrho \mathfrak {B}_{{\mathfrak {c}}}+7)r^2+8\big )\big ) -A\big (4\mathrm {e}^{Ar^2}\\&\qquad \times \big (r^2-\varrho \big )\big (Br^2 -\varrho \mathfrak {B}_{{\mathfrak {c}}}+1\big )\\&\qquad +\varrho \big (13B^3(2\varrho \mathfrak {B}_{{\mathfrak {c}}}+1) r^6+B^2(64\varrho \mathfrak {B}_{{\mathfrak {c}}}+55)r^4\\&\qquad +B(8\varrho \mathfrak {B}_{{\mathfrak {c}}}+69)r^2 -4\varrho \mathfrak {B}_{{\mathfrak {c}}}+4\big )\big )\big \} r^2-2\big (\mathrm {e}^{Ar^2}\big (r^2-\varrho \big )\\&\qquad +\big (B^2r^4 +3Br^2-A\big (Br^2+2\big )r^2+1\big )\varrho \big )\\&\qquad \times \big (4\mathrm {e}^{Ar^2}\big (A\big (r^2-\varrho \big )+1\big ) +\big (-2A^2r^2+B\big (6Br^2+17\big )\\&\qquad -A\big (20Br^2+21\big )\big )\varrho \big ) \big \{A^3\varrho \big (B(22\varrho \mathfrak {B}_{{\mathfrak {c}}}+1)r^2+7\\&\qquad +44\varrho \mathfrak {B}_{{\mathfrak {c}}}\big )r^4 +A^2\varrho \big (B^2(10\varrho \mathfrak {B}_{{\mathfrak {c}}}+9) r^4\\&\qquad +B(31-36\varrho \mathfrak {B}_{{\mathfrak {c}}})r^2 -8\varrho \mathfrak {B}_{{\mathfrak {c}}}\\&\qquad -4\mathrm {e}^{Ar^2}\big (3r^2+\varrho \big ) \mathfrak {B}_{{\mathfrak {c}}}+11\big )r^2\\&\qquad +B \big (4\mathrm {e}^{Ar^2}\big (r^2-\varrho \big ) \big (B(\varrho \mathfrak {B}_{{\mathfrak {c}}}+1)r^2+2\big )\\&\qquad +\varrho \big (3B^3(6\varrho \mathfrak {B}_{{\mathfrak {c}}}+1) r^6+B^2(28\varrho \mathfrak {B}_{{\mathfrak {c}}}+33)r^4\\&\qquad +6B(\varrho \mathfrak {B}_{{\mathfrak {c}}}+7)r^2+8\big )\big )\\&\qquad -A\big (4\mathrm {e}^{Ar^2}\big (r^2-\varrho \big ) \big (Br^2-\varrho \mathfrak {B}_{{\mathfrak {c}}}+1\big )\\&\qquad +\varrho \big (13B^3(2\varrho \mathfrak {B}_{{\mathfrak {c}}}+1)r^6+B^2\\&\qquad \times (64\varrho \mathfrak {B}_{{\mathfrak {c}}}+55)r^4 +B(8\varrho \mathfrak {B}_{{\mathfrak {c}}}+69)r^2\\&\qquad -4\varrho \mathfrak {B}_{{\mathfrak {c}}}+4\big )\big )\big \}r^2 +2\big (\mathrm {e}^{Ar^2}\big (r^2 -\varrho \big )\\&\qquad +\big (B^2r^4+3Br^2-A\big (Br^2+2\big )r^2+1\big )\varrho \big ) \big (4\mathrm {e}^{Ar^2}\big (r^2-\varrho \big )\\&\qquad +\big (4 -A^2r^4+3B^2r^4+17Br^2-A \big (10Br^2+21\big )r^2\big )\varrho \big )\\&\qquad \quad \big \{A^3\varrho \big (B(22\varrho \mathfrak {B}_{{\mathfrak {c}}}+1)\\ \end{aligned}$$
$$\begin{aligned}&\qquad \times r^2+44\varrho \mathfrak {B}_{{\mathfrak {c}}}+7\big ) r^4+A^2\varrho \big (B^2(10\varrho \mathfrak {B}_{{\mathfrak {c}}}+9)r^4\\&\qquad +B(31-36\varrho \mathfrak {B}_{{\mathfrak {c}}})r^2 -8\varrho \mathfrak {B}_{{\mathfrak {c}}}\\&\qquad -4\mathrm {e}^{Ar^2}\big (3r^2+\varrho \big ) \mathfrak {B}_{{\mathfrak {c}}}+11\big )r^2\\&\qquad +B\big (4\mathrm {e}^{Ar^2}\big (r^2-\varrho \big ) \big (B(\varrho \mathfrak {B}_{{\mathfrak {c}}}+1) r^2+2\big )\\&\qquad +\varrho \big (3B^3 (6\varrho \mathfrak {B}_{{\mathfrak {c}}}+1)r^6 +B^2(28\varrho \mathfrak {B}_{{\mathfrak {c}}}+33) r^4\\&\qquad +6B(\varrho \mathfrak {B}_{{\mathfrak {c}}}+7) r^2+8\big )\big )\\&\qquad -A\big (4\mathrm {e}^{Ar^2} \big (r^2-\varrho \big )\big (Br^2-\varrho \mathfrak {B}_{{\mathfrak {c}}}+1\big )\\&\qquad +\varrho \big (13B^3(2\varrho \mathfrak {B}_{{\mathfrak {c}}}+1) r^6+B^2 (64\varrho \mathfrak {B}_{{\mathfrak {c}}}+55) r^4\\&\qquad +B(8\varrho \mathfrak {B}_{{\mathfrak {c}}}+69)r^2 -4\varrho \mathfrak {B}_{{\mathfrak {c}}}+4\big )\big )\big \}-4\bigg ]\bigg |. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Naseer, T. Study of anisotropic compact stars in \(f({\mathcal {R}},{\mathcal {T}},{\mathcal {R}}_{\chi \xi }{\mathcal {T}}^{\chi \xi })\) gravity. Pramana - J Phys 96, 119 (2022). https://doi.org/10.1007/s12043-022-02357-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02357-4

Keywords

PACS Nos

Navigation