Skip to main content
Log in

Matter–curvature gravity modification and the formation of cylindrical isotropic systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we constructed the three-layered gravastar model in cylindrical space–time. We considered one of the modified gravity theories to investigate the structural progression of the celestial object. The matter we considered in this model is effective, which further constituted the perfect fluid and extra degrees of freedom due to the modification of Einstein gravity. For the modelling of the three regions of gravastar, we used a specific barotropic equation of state. We then evaluated the subsequent field equations, hydrostatic equilibrium condition and gravitational mass. Furthermore, the metric coefficients for the three regions of the system were determined. Eventually, we discussed the important features of the gravastar and deduced its physical significance along with its graphical representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P O Mazur and E Mottola, Proc. Natl Acad. Sci. USA 101, 9545 (2004)

    Article  ADS  Google Scholar 

  2. C Cattoen, T Faber and M Visser, Class. Quantum Gravity 22, 4189 (2005)

    Article  ADS  Google Scholar 

  3. M Visser and D L Wiltshire, Class. Quantum Gravity 21, 1135 (2004)

    Article  ADS  Google Scholar 

  4. A DeBenedictis, D Horvat, S Ilijić, S Kloster and K Viswanathan, Class. Quantum Gravity 23, 2303 (2006)

    Article  ADS  Google Scholar 

  5. C B Chirenti and L Rezzolla, Class. Quantum Gravity 24, 4191 (2007)

    Article  ADS  Google Scholar 

  6. N Sakai, H Saida and T Tamaki, Phys. Rev. D 90, 104013 (2014)

    Article  ADS  Google Scholar 

  7. S Fay, S Nesseris and L Perivolaropoulos, Phys. Rev. D 76, 063504 (2007)

    Article  ADS  Google Scholar 

  8. N J Poplawski, preprint arXiv:gr-qc/0608031 (2006)

  9. T Harko, F S N Lobo, S Nojiri and S D Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  10. A Das, S Ghosh, D Deb, F Rahaman and S Ray, Nucl. Phys. B 954, 114986 (2020)

    Article  Google Scholar 

  11. U Debnath, Eur. Phys. J. C 79, 499 (2019)

    Article  ADS  Google Scholar 

  12. Z Haghani, T Harko, F S N Lobo, H R Sepangi and S Shahidi, Phys. Rev. D 88, 044023 (2013)

    Article  ADS  Google Scholar 

  13. S D Odintsov and D Sáez-Gómez, Phys. Lett. 725, 437 (2013)

    Article  MathSciNet  Google Scholar 

  14. E Baffou, M Houndjo and J Tosssa, Astrophys. Space Sci. 361, 376, (2016)

    Article  ADS  Google Scholar 

  15. I Ayuso, J B Jiménez and Á de la Cruz-Dombriz, Phys. Rev. D 91, 104003 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Z Yousaf, M Bhatti and T Naseer, Eur. Phys. J. Plus 135, 323 (2020)

    Article  Google Scholar 

  17. Z Yousaf, M Bhatti and T Naseer, Phys. Dark Universe 28, 100535 (2020)

    Article  Google Scholar 

  18. M Z Bhatti, Z Yousaf and M Nawaz, Int. J. Geom. Meth. Mod. Phys. 17, 2050017 (2020)

    Article  Google Scholar 

  19. M Z Bhatti, K Bamba, Z Yousaf and M Nawaz, J. Cosmol. Astropart. Phys. 09, 011 (2019)

    Article  ADS  Google Scholar 

  20. Z Yousaf, M Bhatti and H Asad, Phys. Dark Universe 28, 100527 (2020)

    Article  Google Scholar 

  21. Z Yousaf, Phys. Scr. 97, 025301 (2022)

    Article  ADS  Google Scholar 

  22. Z Yousaf, Universe 8, 131 (2022)

    Article  ADS  Google Scholar 

  23. S Ghosh et al, Phys. Lett. B 767, 380 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. S Ghosh, S Ray, F Rahaman and B Guha, Ann. Phys. 394, 230 (2018)

    Article  ADS  Google Scholar 

  25. S Ghosh, D Shee, S Ray, F Rahaman and B K Guha, Results Phys. 14, 102473 (2019)

    Article  Google Scholar 

  26. S Ghosh, D Shee, S Ray, F Rahaman and B K Guha, Ann. Phys. 411, 167968 (2019)

    Article  Google Scholar 

  27. M Bhatti, Z Yousaf and M Ajmal, Int. J. Mod. Phys. D 28, 1950123 (2019)

    Article  ADS  Google Scholar 

  28. A Das, S Ghosh, B Guha, S Das, F Rahaman and S Ray, Phys. Rev. D 95, 124011 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. R Sengupta, S Ghosh, S Ray, B Mishra and S Tripathy, Phys. Rev. D 102, 024037 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. S Ray, R Sengupta and H Nimesh, Int. J. Mod. Phys. D 29, 2030004 (2020)

    Article  ADS  Google Scholar 

  31. Y B Zeldovich, Mon. Not. R. Astron. Soc. 160, 1P (1972)

    Article  ADS  Google Scholar 

  32. B J Carr, Astrophys. J. 201, 1 (1975)

    Article  ADS  Google Scholar 

  33. M S Madsen, J P Mimoso, J A Butcher and G F Ellis, Phys. Rev. D 46, 1399 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  34. P S Wesson, Vistas Astron. 29, 281 (1986)

    Article  ADS  Google Scholar 

  35. T M Braje and R W Romani, Astrophys. J. 580, 1043 (2002)

    Article  ADS  Google Scholar 

  36. L P Linares, M Malheiro and S Ray, Int. J. Mod. Phys. D 13, 1355 (2004)

    Article  ADS  Google Scholar 

  37. W Israel, Nuovo Cimento B 44, 1 (1966)

    Article  ADS  Google Scholar 

  38. G Darmois, Memorial des Sciences Mathématiques (Gauthier Villars, Paris, 1927) Vol. 25

  39. Z Yousaf, M Z-u-H Bhatti and U Farwa, Eur. Phys. J. C 77 359 (2017)

    Article  ADS  Google Scholar 

  40. K Lanczos, Ann. Phys. (Berlin) 379, 518 (1924)

    Article  ADS  Google Scholar 

  41. N Sen, Ann. Phys. (Berlin) 378, 365 (1924)

    Article  ADS  Google Scholar 

  42. G Perry and R B Mann, Gen. Relativ. Gravit. 24, 305 (1992)

    Article  ADS  Google Scholar 

  43. P Musgrave and K Lake, Class. Quantum Gravity 13, 1885 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Yousaf.

Appendix

Appendix

The values of \(\delta _{i}\)’s where \(i=\)1–10 and that of \(D_{j}\)’s where \(j=\)6,7,8 appeared in eqs (9), (10) and (11) are discussed as follows:

$$\begin{aligned} \delta _{1}&=1+\frac{Rf_{Q}}{2}-\frac{9f_{Q}H'^{2}}{8KH^{2}}-\frac{2f_{Q}}{r^{2}K}\\&\quad -\frac{K'H'f_{Q}}{4HK^{2}}+\frac{f_{Q}'H'}{4H^{2}} +\frac{3f_{Q}H''}{4KH}-\frac{f_{Q}''}{2K}\\ {}&\quad -\frac{3f_{Q}'H'}{4KH} +\frac{K'f_{Q}'}{4K^{2}}+\frac{5f_{Q}H'}{4rKH},\\ \delta _{2}&=\frac{K'f_{Q}}{4K^{2}}-\frac{f_{Q}'}{K}-\frac{f_{Q}H'}{2H^{2}},\\ \delta _{3}&=-\frac{5H'^{2}f_{Q}}{8KH^{2}}-\frac{f_{Q}''}{K} -\frac{f_{Q}'K'}{4K^{2}}\\&\quad -\frac{f_{Q}H''}{4KH}+\frac{f_{Q}'}{2rK}-\frac{3f_{Q}H'}{4rKH}\\&\quad -\frac{f_{Q}'}{rKH}\frac{2f_{Q}'}{rH}-\frac{f_{Q}}{r^{2}KH},\\ \delta _{4}&=\frac{f_{Q}'}{K}-\frac{f_{Q}K'}{4K^{2}}+\frac{f_{Q}}{2rK},\\ D_{6}&=-\frac{f}{2}+\frac{f_{R}R}{2}.\\ \delta _{5}&=f_{T}-\frac{f_{Q}'H'}{4H^{2}}-\frac{f_{Q}K'H'}{4HK^{2}}\\&\quad -\frac{H''f_{Q}}{4KH}-\frac{f_{Q}H'^{2}}{8KH^{2}}+\frac{2f_{Q}}{Kr^{2}}\\&\quad -\frac{f_{Q}H'}{4rHK}+\frac{f_{Q}'H'}{2HK},\\ \delta _{6}&=f_{T}+\frac{Rf_{Q}}{2}+1-\frac{f_{Q}'H'}{4KH}\\&\quad +\frac{2f_{Q}''}{K}-\frac{5H'^{2}f_{Q}}{8KH^{2}}-\frac{f_{Q}H'}{4rKH}-\frac{f_{Q}K''}{2K^{2}} \\&\quad -\frac{3f_{Q}H''}{4HK}-\frac{H'K'f_{Q}}{4HK^{2}}-\frac{3f_{Q}'}{2rK}-\frac{4K'f_{Q}}{rK^{2}},\\ \delta _{7}&=\frac{f_{Q}'}{K}-\frac{3f_{Q}}{2rK}-\frac{f_{Q}H'}{4HK},\\ D_{7}&=\frac{f}{2}-\frac{Rf_{R}}{2}-\frac{H'f_{R}'}{2HK}-\frac{2f_{R}'}{rK},\\ \delta _{8}&=f_{T}-\frac{f_{Q}'H'}{4H^{2}}-\frac{H'^{2}f_{Q}}{8KH^{2}}-\frac{H''f_{Q}}{4HK}\\&\quad +\frac{K'H'f_{Q}}{4HK^{2}}+\frac{2f_{Q}}{Kr^{2}}-\frac{f_{Q}H'}{4HKr},\\ \delta _{9}&=f_{T}+\frac{Rf_{Q}}{2}+1-\frac{3f_{Q}'H'}{4HK}\\&\quad -\frac{f_{Q}H'^{2}}{8KH^{2}}+\frac{f_{Q}''}{2K}+\frac{3f_{Q}'K'}{4K^{2}}-\frac{H''f_{Q}}{4HK}\\&\quad -\frac{f_{Q}H'K'}{4HK^{2}}-\frac{3f_{Q}'}{2Kr}+\frac{3f_{Q}H'}{4HKr}\\&\quad +\frac{f_{Q}'K'}{4K^{2}}-\frac{2f_{Q}}{r^{2}}-\frac{f_{Q}K'}{Kr^{2}}+\frac{f_{Q}'}{rK},\\ \delta _{10}&=-\frac{3H'f_{Q}}{4HK}-\frac{2f_{Q}'}{K}\\&\quad +\frac{f_{Q}K'}{2K^{2}}-\frac{3f_{Q}}{2Kr}-\frac{f_{Q}}{rK},\\ D_{8}&=\frac{f}{2}-\frac{f_{R}R}{2}+\frac{f_{R}'}{rK}-\frac{2f_{R}}{r^{2}K}\\&\quad +\frac{K'f_{R}'}{2K^{2}}-\frac{f_{R}''}{K}-\frac{H'f_{R}'}{2HK}.\\ Z&=\frac{2}{2+Rf_{Q}+2f_{T}}\left[ \frac{f_{Q}'PK'H'}{4K^{2}H}-\frac{f_{Q}'PH''}{2HK}\right. \\&\quad \left. +\frac{f_{Q}'PH'^{2}}{4KH^{2}}+\frac{f_{Q}'PK'}{rK^{2}} +\frac{f_{Q}PK''H'}{4HK^{2}}\right. \\&\quad +\frac{3f_{Q}PK'H''}{4HK^{2}}-\frac{f_{Q}PH'''}{2HK}\\&\quad +\frac{f_{Q}PH''H'}{4H^{2}K}-\frac{f_{Q}PH'^{3}}{2KH^{3}}-\frac{f_{Q}PK''}{rK^{2}}-\frac{f_{Q}PK'}{r^{2}K^{2}}\\&\quad -\frac{f_{Q}PK'^{2}H'}{2HK^{3}}+\frac{f_{Q}P'K'H'}{8K^{2}H}\\&\quad -\frac{f_{Q}P'H''}{4KH}+\frac{f_{Q}P'H'^{2}}{8KH^{2}}-P'f_{T}-Pf_{T}'\\&\quad +\frac{f_{Q}P'}{r^{2}K}+\frac{f_{Q}'PH'}{KHr}+\frac{f_{Q}'P}{Kr^{2}}+\frac{f_{Q}P'H'}{KHr}\\&\quad -\frac{f_{Q}R'P}{2}-\frac{f_{Q}'RP}{2}+\frac{f_{Q}\rho 'K'H'}{8K^{2}H}-\frac{f_{Q}\rho 'H''}{4KH}\\&\quad +\left. \frac{f_{Q}\rho 'H'^{2}}{8KH^{2}}-\rho 'f_{T}-\rho f_{T}'+\frac{\rho 'f_{T}}{2}\right. \\&\quad \left. -\frac{P'f_{T}}{2}-\frac{f_{Q}\rho 'H'}{2KHr} +\frac{f_{Q}P'H'}{2KHr}+\frac{f_{Q}\rho '}{r^{2}K}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, Z., Bhatti, M.Z. & Asad, H. Matter–curvature gravity modification and the formation of cylindrical isotropic systems. Pramana - J Phys 96, 111 (2022). https://doi.org/10.1007/s12043-022-02356-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02356-5

Keywords

PACS Nos

Navigation