Skip to main content

Advertisement

Log in

Photon-induced low-energy nuclear reactions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We propose a new mechanism for inducing low-energy nuclear reactions (LENRs). The process is initiated by a perturbation which we assumed to be caused by absorption or emission of a photon. Due to the electromagnetic perturbation, the initial two-body nuclear state forms an intermediate state to make a transition into the final nuclear state through the action of another perturbation. In the present paper, we take the second perturbation to be also electromagnetic. We need to sum over all energies of the intermediate state. Since the upper limit on this sum is infinity it is possible to get contributions from very high energies for which the barrier penetration factor is not too small. By considering a specific reaction, we determine the conditions under which this mechanism may lead to significantly enhanced reaction rates. We find that the mechanism leads to very small cross-sections in free space. However, in a condensed medium, there exist several possibilities leading to enhanced cross-sections, which may lead to observable reaction rates even at relatively low energies. Hence we argue that LENRs are possible and provide a theoretical set-up which may explain some of the experimental claims in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M Fleischmann and S Pons, J. Electroanal. Chem. Interf. Electrochem. 261, 301 (1989)

    Article  Google Scholar 

  2. S E Jones et al, Nature 338, 737 (1989)

    Article  ADS  Google Scholar 

  3. S E Koonin and M Nauenberg, Nature 339, 690 (1989)

    Article  ADS  Google Scholar 

  4. A J Leggett and G Baym, Phys. Rev. Lett. 63, 191 (1989)

    Article  ADS  Google Scholar 

  5. S B Krivit, Nuclear energy encyclopedia (John Wiley & Sons, Ltd., 2011), Ch. 41, p. 479

  6. L I Urutskoev, Nuclear energy encyclopedia (John Wiley & Sons, Ltd., 2011), Ch. 42, p. 497

  7. M Srinivasan, G Miley and E Storms, Nuclear energy encyclopedia (John Wiley & Sons, Ltd., 2011), Ch. 43, p. 503

  8. J M Zawodny and S B Krivit, Nuclear energy encyclopedia (John Wiley & Sons, Ltd., 2011), Ch. 44, p. 541

  9. W Williams and J Zawodny, Nuclear energy encyclopedia (John Wiley & Sons, Ltd., 2011), Ch. 45, p. 547

  10. A Meulenberg, Curr. Sci. 108, 499 (2015)

    Google Scholar 

  11. A Takahashi, Curr. Sci. 108, 514 (2015)

    Google Scholar 

  12. K P Sinha, Curr. Sci. 108, 516 (2015)

    Google Scholar 

  13. C L Liang, Z M Dong and X Z Li, Curr. Sci. 108, 519 (2015)

    Google Scholar 

  14. E Storms, Curr. Sci. 108, 535 (2015)

    Google Scholar 

  15. M C McKubre, Curr. Sci. 108, 495 (2015)

    Google Scholar 

  16. J-P Biberian, Curr. Sci. 108, 633 (2015)

    Google Scholar 

  17. M Srinivasan and K Rajeev, Cold fusion (Elsevier, 2020), Ch. 13, p. 233

  18. J-P Biberian, Cold fusion: Advances in condensed matter nuclear science (Elsevier, 2020)

  19. A Huke, K Czerski, P Heide, G Ruprecht, N Targosz and W Żebrowski, Phys. Rev. C 78, 015803 (2008)

    Article  ADS  Google Scholar 

  20. V Pines et al, Phys. Rev. C 101, 044609 (2020)

    Article  ADS  Google Scholar 

  21. V Vysotskii and M Vysotskyy, EPJA 49, 08 (2013)

    Article  Google Scholar 

  22. S Bartalucci, V I Vysotskii and M V Vysotskyy, Phys. Rev. Accel. Beams 22, 054503 (2019)

    Article  ADS  Google Scholar 

  23. C Spitaleri, C Bertulani, L Fortunato and A Vitturi, Phys. Lett. B 755, 275 (2016)

    Article  ADS  Google Scholar 

  24. P Kálmán and T Keszthelyi, Phys. Rev. C 99, 054620 (2019)

    Article  ADS  Google Scholar 

  25. P Hagelstein, JCMNS 16, 46 (2015)

    Google Scholar 

  26. A Widom and L Larsen, EPJC 46, 107 (2006)

    Article  ADS  Google Scholar 

  27. Y Srivastava, A Widom and L Larsen, Pramana – J. Phys. 75, 617 (2010)

    Google Scholar 

  28. J-L Paillet and A Meulenberg, JCMNS 29, 472 (2019)

    Google Scholar 

  29. H Assenbaum, K Langanke and C Rolfs, Z. Phys. A: Atomic Nuclei 327, 461 (1987)

    Google Scholar 

  30. S Ichimaru, Rev. Mod. Phys. 65, 255 (1993)

    Article  ADS  Google Scholar 

  31. V A Chechin, V A Tsarev, M Rabinowitz and Y E Kim, Int. J. Theor. Phys. 33, 617 (1994)

    Article  Google Scholar 

  32. J Kasagi, H Yuki, T Baba, T Noda, T Ohtsuki and A G Lipson, J. Phys. Soc. Jpn 71, 2881 (2002)

    Article  ADS  Google Scholar 

  33. F Raiola et al, EPJA 19, 283 (2004)

    Article  ADS  Google Scholar 

  34. K Czerski, A Huke, P Heide and G Ruprecht, The 2nd International Conference on Nuclear Physics in Astrophysics (Springer, 2006), p. 83

  35. M Coraddu, M Lissia and P Quarati, Cent. Eur. J. Phys. 7, 527 (2009)

    Google Scholar 

  36. K Czerski et al, EPL 113, 22001 (2016)

    Article  ADS  Google Scholar 

  37. T Schenkel et al, J. Appl. Phys. 126, 203302 (2019)

    Article  ADS  Google Scholar 

  38. C Berlinguette et al, Nature 570, 45 (2019)

    Article  ADS  Google Scholar 

  39. S Focardi et al, Condensed matter nuclear science (World Scientific, 2006), p. 70

  40. E Storms and B Scanlan, JCMNS 11, 142 (2013)

    Google Scholar 

  41. L Holmlid and S Olafsson, Int. J. Hydrogen Energy 40, 10559 (2015)

    Article  Google Scholar 

  42. M Srinivasan, JCMNS 15, 137 (2015)

    Google Scholar 

  43. N Packham et al, J. Electroanal. Chem. 270, 451 (1989)

    Article  Google Scholar 

  44. E Merzbacher, Quantum mechanics (Wiley, 1998)

  45. P Jain et al, JCMNS 35, 1 (2022)

    Google Scholar 

  46. D D Clayton, Principles of stellar evolution and nucleosynthesis (The University of Chicago Press, Chicago, 1968)

    Google Scholar 

  47. C A Bertulani, Nuclear physics in a nutshell (Princeton University Press, 2007)

  48. H-S Bosch and G Hale, Nucl. Fusion 32, 611 (1992)

    Article  ADS  Google Scholar 

  49. C A Bertulani and T Kajino, Prog. Part. Nucl. Phys. 89, 56 (2016)

    Article  ADS  Google Scholar 

  50. P Jain, An introduction to astronomy and astrophysics (CRC Press, 2016)

  51. J J Sakurai, Advanced quantum mechanics (Pearson Education, 1967)

  52. A Dodonov and V Dodonov, Phys. Lett. A 378, 1071 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  53. K P Rajeev and D Gaur, JCMNS 24, 278 (2017)

    Google Scholar 

  54. E Abrahams, 50 Years of Anderson localization (World Scientific, 2010)

  55. P A Lee and T V Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  56. J I Gersten and M H Mittleman, Phys. Rev. Lett. 48, 651 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Mahadeva Srinivasan, Manoj Harbola, Amit Agarwal and Aditya Kelkar for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Jain.

Appendix

Appendix

In this appendix, we provide details of the angular integrals in the sum over energies in the intermediate state. We consider the initial state with \(S=1/2\), \(S_z=1/2\) and \(l=0\). The intermediate state has \(l=1\). With \(S=1/2\) and \(l=1\) we can form two states with \(j=3/2\) and \(j=1/2\). The states \(|j,j_z\rangle \) that are relevant for us are

$$\begin{aligned}&|3/2,3/2\rangle = |1/2,1/2;1,1\rangle ,\nonumber \\&|3/2,-1/2\rangle = \sqrt{1/3}\ |1/2,1/2;1,-1\rangle \nonumber \\&\qquad \qquad \qquad \qquad + \sqrt{2/3}\ |1/2,-1/2;1,0\rangle ,\nonumber \\&|1/2,-1/2\rangle = -\sqrt{2/3}\ |1/2,1/2;1,-1\rangle \nonumber \\&\qquad \qquad \qquad \qquad + \sqrt{1/3}\ |1/2,-1/2;1,0\rangle , \end{aligned}$$
(47)

where on the right-hand side the states are shown in notation \(|S,S_z;l,l_z\rangle \). Let us take the final photon direction to be along the z-axis, i.e. \({\hat{k}}_f = {\hat{z}}\). The corresponding polarisation vectors are along the \({\hat{x}}\)- and \({\hat{y}}\)-axes. Let us consider any one of the amplitudes appearing in eq. (32),

$$\begin{aligned} {{\mathcal {M}}}_1 = \langle n|\mathrm {e}^{i\vec k_1\cdot \vec {r}} \vec \epsilon \,'_{\beta '}\cdot \vec {p}|i\rangle . \end{aligned}$$
(48)

Since the initial state has \(l=0\), we can express this as

$$\begin{aligned} {{\mathcal {M}}}_1 \equiv \int \mathrm {d}^3 r \psi ^*_n \mathrm {e}^{i\vec k_1\cdot \vec {r}} \vec {\epsilon }\,'_{\beta '}\cdot {\hat{r}} p_r\psi _i. \end{aligned}$$
(49)

We have \(\vec {\epsilon }\,'_1\cdot {\hat{r}} = \sin \theta \cos \phi \) and \(\vec {\epsilon }\,'_2\cdot {\hat{r}} = \sin \theta \sin \phi \). The intermediate wave function \(\psi _n\) corresponds to \(l=1\). We get non-zero contributions only for \(\psi _n\sim Y_1^1\) and \(\psi _n\sim Y_1^{-1}\). Hence, we have four relevant combinations involving the two polarisation vectors and the two spherical harmonics. Let us consider one of these angular integrals, given by

$$\begin{aligned} I_1\equiv & {} \int \mathrm {d}\Omega Y_1^{1*}({\hat{r}}) \mathrm {e}^{i\vec k_1\cdot \vec {r}} \vec {\epsilon }\,'_1\cdot {\hat{r}}\nonumber \\= & {} -{1\over 2} \sqrt{3\over 2\pi } \int \mathrm {d}\Omega \sin \theta \mathrm {e}^{-i\phi } \mathrm {e}^{ik_1r\cos \theta }\sin \theta \cos \phi .\nonumber \\ \end{aligned}$$
(50)

In performing the integral over the polar angle \(\theta \) we keep only the leading-order contribution. We obtain

$$\begin{aligned} I_1= \left( {1\over 2}\sqrt{3\over 2\pi }\, \right) 4\pi i\ {\sin k_1r\over k_1^2 r^2}. \end{aligned}$$
(51)

Here we have dropped terms of higher order in \(1/k_1 r\), which will be small since \(k_1\) takes rather large values. Similarly, we have the remaining integrals

$$\begin{aligned}&I_2 \equiv \int \mathrm {d}\Omega Y_1^{1*}({\hat{r}}) \mathrm {e}^{i\vec k_1\cdot \vec {r}} \vec {\epsilon }\,'_2\cdot {\hat{r}} = - iI_1 \end{aligned}$$
(52)
$$\begin{aligned}&I_3 \equiv \int \mathrm {d}\Omega Y_1^{-1*}({\hat{r}}) \mathrm {e}^{i\vec k_1\cdot \vec {r}} \vec {\epsilon }\,'_1\cdot {\hat{r}} = - I_1 \end{aligned}$$
(53)

and

$$\begin{aligned} I_4 \equiv \int \mathrm {d}\Omega Y_1^{-1*}({\hat{r}}) \mathrm {e}^{i\vec k_1\cdot \vec {r}} \vec {\epsilon }\,'_2\cdot {\hat{r}} = -iI_1. \end{aligned}$$
(54)

We next consider the final-state matrix element

$$\begin{aligned} {{\mathcal {M}}}_2 \equiv \langle f|\vec \epsilon \cdot {\hat{r}}|n\rangle . \end{aligned}$$
(55)

Let the initial photon momentum be

$$\begin{aligned} \vec k_i = k_i\left[ \sin \theta _i(\cos \phi _i{\hat{x}} +\sin \phi _i {\hat{y}}) + \cos \theta _i{\hat{z}}\right] . \end{aligned}$$
(56)

The corresponding polarisation vectors can then be taken as

$$\begin{aligned} \vec \epsilon _1= & {} \sin \phi _i{\hat{x}} - \cos \phi _i{\hat{y}}\nonumber \\ \vec \epsilon _2= & {} \cos \theta _i (\cos \phi _i{\hat{x}} + \sin \phi _i{\hat{y}}) - \sin \theta _i{\hat{z}}. \end{aligned}$$
(57)

By a suitable choice of coordinates, we can set \(\phi _i=0\). In any case, it will cancel out in the final result. We again find four relevant angular integrals in \({{\mathcal {M}}}_2\). These are

$$\begin{aligned} I'_1\equiv & {} \int \mathrm {d}\Omega '\ \vec {\epsilon }_1\cdot {\hat{r}}'\ Y_1^1({\hat{r}}') = \left( {1\over 2}\sqrt{3\over 2\pi }\, \right) {4\pi \over 3} i\mathrm {e}^{i\phi _i}\nonumber \\ I'_2\equiv & {} \int \mathrm {d}\Omega '\ \vec {\epsilon }_1\cdot {\hat{r}}'\ Y_1^{-1}({\hat{r}}') = -I_1^{\prime *}\nonumber \\ I'_3\equiv & {} \int \mathrm {d}\Omega '\ \vec {\epsilon }_2\cdot {\hat{r}}'\ Y_1^{1}({\hat{r}}') = i\cos \theta _i I_1^{\prime }\nonumber \\ I'_4\equiv & {} \int \mathrm {d}\Omega '\ \vec {\epsilon }_2\cdot {\hat{r}}'\ Y_1^{-1}({\hat{r}}') = i\cos \theta _i I_1^{\prime *}. \end{aligned}$$
(58)

Let us now consider the case in which the initial and final polarizstion vectors are \(\vec \epsilon _1\) and \(\vec \epsilon \,'_1\). In this case, adding contributions from all the states in eq. (47), we obtain

$$\begin{aligned}&{{\mathcal {M}}}_2{{\mathcal {M}}}_1 = -4\pi i \sin \phi _i\int \mathrm {d}r' r'^2 R_f(r')r'R_n(r') \nonumber \\&\quad \int \mathrm {d}r\, r^2 R_n(r) {\sin k_1r\over k_1^2 r^2}p_rR_i(r), \end{aligned}$$
(59)

where \(R_i\), \(R_n\) and \(R_f\) are the radial wave functions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Kumar, A., Pala, R. et al. Photon-induced low-energy nuclear reactions. Pramana - J Phys 96, 96 (2022). https://doi.org/10.1007/s12043-022-02347-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02347-6

Keywords

PACS Nos

Navigation