Skip to main content
Log in

Impact of gate-on-drain overlap on the electrical characteristics of TFETs: Role of oxide material and drain spacer

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the current study, the gate overlap on the drain side was investigated from the prospects of both DC and high-frequency behaviour. The key parameters extracted in this work to determine the main performance parameters are subthreshold swing (SS), ambipolar current (\(I_\mathrm{amb})\), ON/OFF current ratio and cut-off frequency. Although the gate overlap on the drain decreases the ambipolar current, it has an adverse effect on the high-frequency performance as the gate-to-drain capacitance increases. This behaviour is observed for increasing overlap length for low-k gate oxide. On the other hand, the ambipolar current does not show a considerable decline when using high-k gate oxide. To obtain a low ambipolar current at lower values of equivalent oxide thickness (EOT), we propose a low-k dielectric spacer above the drain side. The low-k spacer not only decreases the gate-to-drain capacitance but also facilitates the suppression of ambipolarity due to overlap. All simulations carried out in this work are done using the Silvaco TCAD device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G A Brown, P M Zeitzoff, G Bersuker and H R Huff, Mater. Today 7, 20 (2004)

    Google Scholar 

  2. K Vanlalawmpuia, R Saha and B Bhowmick, Appl. Phys. A 124(10), 701 (2018)

    Article  ADS  Google Scholar 

  3. H Ferhati, F Djeffal and T Bentrcia, Beilstein J. Nanotechnol. 9, 1856 (2018)

    Article  Google Scholar 

  4. S K Mitra and B Bhowmick, Micro Nano Lett. 13, 1672 (2018)

    Google Scholar 

  5. J Madan, R S Gupta and R Chaujar, Microsyst. Technol. 23, 4091 (2017)

    Article  Google Scholar 

  6. J Madan, R Pandey and R Chaujar, Mater. Today Proc. 5, 17453 (2018)

    Article  Google Scholar 

  7. M Elnaggar, A Shaker and M Fedawy, Semicond. Sci. Technol. 34(4), 045015 (2019)

    Article  ADS  Google Scholar 

  8. Y Peng, G Han, H Wang, C Zhang, Y Liu, Y Wang, S Zhao, J Zhang and Y Hao, Superlatt. Microstruct. 93, 144 (2016)

    Article  ADS  Google Scholar 

  9. K Boucart and A M Ionescu, IEEE Trans. Electron Devices 54(7), 1725 (2007)

    Article  ADS  Google Scholar 

  10. J C Lee, T J Ahn and Y S Yu, J. Nanosci. Nanotechnol. 18, 5925 (2018)

    Article  Google Scholar 

  11. A Shaker, A Maged, Ali Elshorbagy, A Abou Elainain and M Elsabbagh, Semicond. Sci. Technol. 35(2), 025007 (2020)

    Article  ADS  Google Scholar 

  12. S Garg and S Saurabh, Superlatt. Microstruct. 113, 261 (2018)

    Article  ADS  Google Scholar 

  13. Mallikarjunarao, R Ranjan, K P Pradhan and P K Sahu, Superlatt. Microstruct. 96, 226 (2016)

  14. N Paras and S S Chauhan, Microelectron. Eng. 217, 111103 (2019)

    Article  Google Scholar 

  15. C K Pandey, D Dash and S Chaudhury, Micro Nano Lett. 14(1), 86 (2018)

    Google Scholar 

  16. D B Abdi and M J Kumar, IEEE J. Electron Devices Soc. 2(6), 187 (2014)

    Article  Google Scholar 

  17. C K Pandey, A Singh and S Chaudhury, Appl. Phys. A 126, 3 (2020)

    Article  Google Scholar 

  18. A Chattopadhyay and A Mallik, IEEE Trans. Electron Devices 58(3), 677 (2011)

    Article  ADS  Google Scholar 

  19. Silvaco, “Atlas User’s Manual,” Silvaco, Inc. (2016)

  20. A Shaker, M ElSabbagh and M M El-Banna, Physica E 106, 346 (2019)

    Article  ADS  Google Scholar 

  21. A Shaker, M El Sabbagh and M M El-Banna, IEEE Trans. Electron Devices 64(9), 3541 (2017)

    Article  ADS  Google Scholar 

  22. M Elgamal, J. Phys.: Conf. Ser. 1447, 012020 (2020)

    Google Scholar 

  23. M Elgamal, J. Comput. Electron. 19, 1068 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Center of Excellence in Nanotechnology, Arab Academy for Science and Technology and Maritime Transport (AASTMT), Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Shaker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliwy, M., Elgamal, M., Shaker, A. et al. Impact of gate-on-drain overlap on the electrical characteristics of TFETs: Role of oxide material and drain spacer. Pramana - J Phys 96, 93 (2022). https://doi.org/10.1007/s12043-022-02341-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02341-y

Keywords

PACS Nos

Navigation