Skip to main content
Log in

Nonlinear analysis of the ion-acoustic solitary and shock wave solutions for non-extensive dusty plasma in the framework of modified Korteweg–de Vries–Burgers equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The characteristic of ion-acoustic solitary and shock waves propagating in a non-extensive plasma is analysed using the framework of the modified Korteweg–de Vries–Burgers (MKdVB) equation. Employing reductive perturbation technique (RPT), the MKdVB equation is derived from the basic guiding equations and further, the equation is converted to a dynamic system using travelling wave transformation. Varying different plasma parameters, phase portraits for the MKdV system are drawn and using bifurcation theory of planar dynamical system, it is observed that the MKdV system may contain shock, solitary and periodic solutions. However, it is evident from the phase portrait analysis of the MKdVB equation that due to the impact of Burgers term, the system includes only the shock and solitary solutions. Initially, different patterned solutions of the MKdV equation are directly derived from the corresponding Hamiltonian of the system, and employing the weighted residual method (WRM), the approximate analytical solutions of the MKdVB equation are explored using the solution of MKdV equation as initial solution. These solutions come as a desired pattern that was predicted by the phase portraits. Finally, some graphs are depicted from a numerical standpoint by which the effects of physical parameters on wave propagation are well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A P Misra, K Roy Chowdhury and A Roy Chowdhury, Phys. Plasmas 14(1), 012110 (2007)

    Article  ADS  Google Scholar 

  2. A A Mamun, Phys. Lett. A 372(25), 4610 (2008)

    Article  ADS  Google Scholar 

  3. H R Pakzad, World Acad. Sci. Eng. Technol. 57, 984 (2011)

    Google Scholar 

  4. A Saha and P Chatterjee, The Europ. Phys. J. Plus 130(11), 222 (2015)

    Article  Google Scholar 

  5. A P Lightman, The Astrophys. J. 253, 842 (1982)

    Article  ADS  Google Scholar 

  6. M G Hafez, M R Talukder and R Sakthivel, Ind. J. Phys. 90(5), 603 (2016)

    Article  Google Scholar 

  7. H R Pakzad and M Tribeche, J. Fusion Energy 32(2), 171 (2013)

    Article  ADS  Google Scholar 

  8. P K Shukla and A A Mamun, IEEE Trans. Plasma Sci. 29(2), 221 (2001)

    Article  ADS  Google Scholar 

  9. B Xie, K He and Z Huang, Phys. Lett. A 247(6), 403 (1998)

    Article  ADS  Google Scholar 

  10. F Verheest, Space Sci. Rev. 77(3–4), 267 (1996)

    ADS  Google Scholar 

  11. N N Rao, P K Shukla and M Yu Yu, Planet. Space Sci. 38(4), 543 (1990)

    Article  ADS  Google Scholar 

  12. F F Chen, Introduction to plasma physics (Springer Sci. & Busi. Media, 2012)

  13. U De Angelis, V Formisano and M Giordano, J. Plasma Phys. 40(3), 399 (1988)

    Article  ADS  Google Scholar 

  14. S Raut, K K Mondal, P Chatterjee and A Roy, SeMA 78, 1 (2021)

    Article  MathSciNet  Google Scholar 

  15. K Roy, A P Misra and P Chatterjee, Phys. Plasmas 15(3), 032310 (2008)

    Article  ADS  Google Scholar 

  16. A P Misra, N C Adhikary and P K Shukla, Phys. Rev. E 86(5), 056406 (2012)

    Article  ADS  Google Scholar 

  17. A Rényi, Acta Math. Acad. Sci. Hungarica 6(3–4), 285 (1955)

    Article  Google Scholar 

  18. C Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  19. C Tsallis, Chaos Soliton Fractals 6, 539 (1995)

    Article  ADS  Google Scholar 

  20. N Paul, K K Mondal and P Chatterjee, Z. Naturforsch. A 74(10), 861 (2019)

    Google Scholar 

  21. S K El-Labany, W F El-Taibany and A Atteya, Phys. Lett. A 382(6), 412 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. A A Mamun, B Eliasson and P K Shukla, Phys. Lett. A 332(5–6), 412 (2004)

    Article  ADS  Google Scholar 

  23. S Y El-Monier and A Atteya, Waves Random Complex Media 32, 1 (2020)

  24. S Roy, S Saha, S Raut and A N Das, J. Appl. Math. Comput. Mech. 20(2), 65 (2021)

    Article  MathSciNet  Google Scholar 

  25. A S Bains, M Tribeche and T S Gill, Phys. Plasmas 18(2), 022108 (2011)

    Article  ADS  Google Scholar 

  26. H Washimi and T Taniuti, Phys. Rev. Lett. 17(19), 996 (1966)

    Article  ADS  Google Scholar 

  27. J Guckenheimer and P Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields (Springer Sci. Busi. Media 2013)

  28. P F Byrd and M D Friedman, Table of integrals of Jacobian elliptic functions, in: Handbook of elliptic integrals for engineers and scientists (Springer, Berlin, Heidelberg, 1971)

  29. H Demiray and C Bayındır, Phys. Plasmas 22, 092105 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewers for their valuable comments and suggestions which helped them to improve the quality of the paper. Mr Subrata Roy is thankful to the University Grants Commission (UGC) (No. 1106/2018), India, for the financial support in pursuing this research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Raut, S. & Kairi, R.R. Nonlinear analysis of the ion-acoustic solitary and shock wave solutions for non-extensive dusty plasma in the framework of modified Korteweg–de Vries–Burgers equation. Pramana - J Phys 96, 67 (2022). https://doi.org/10.1007/s12043-022-02302-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02302-5

Keywords

PACS

Navigation