Skip to main content
Log in

Deformed special relativity with an invariant minimum speed as an explanation of the cosmological constant

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper shows the need for the emergence of a universal minimum speed in the space–time by thoroughly investigating Dirac’s large number hypothesis (LNH). We realise that there should be a minimum speed V with the same status of the invariance of the speed of light c. However, V has gravitational origin. Hence, such a minimum speed forms a new kinematic basis in the space–time, leading to a new deformed special relativity (DSR) for the quantum world so-called symmetrical special relativity (SSR). Furthermore, we show that such a new structure of space–time (SSR) reveals a connection between V and a preferred reference frame \(S_V\) of the background field, leading to the cosmological constant \(\Lambda \), which can be associated with a cosmological antigravity. We also investigate the effect of the number of baryons N (Eddington number) of the observable Universe on the hydrogen atom. Finally, we show that SSR-metric plays the role of a de-Sitter (dS) metric with a positive cosmological constant, which could assume a tiny value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. F R Klinkhamera and G E Volovik, Phys. Lett. A 347, 8 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. Y B Zeldovich, JETP Lett. 6, 316 (1967); Sov. Phys. Uspekhi 11, 381 (1968)

    Article  ADS  Google Scholar 

  3. P A M Dirac, Nature 139, 323 (1937)

    Article  ADS  Google Scholar 

  4. P A M Dirac, Proc. Roy. Soc. London A 165, 198 (1938)

    ADS  Google Scholar 

  5. Y B Zeldovich, Usp. Nauk 95, 209 (1968)

    Article  Google Scholar 

  6. S C Ulhoa and E P Spaniol, J. Gravity 2016, 1 (2016)

    Article  Google Scholar 

  7. S C Ulhoa, Ann. Phys. 524, 273 (2012)

    Article  Google Scholar 

  8. G Silva, A F Santos and S C Ulhoa, Eur. Phys. J. 76, 167 (2016)

    Article  ADS  Google Scholar 

  9. T Padmanabam, arXiv:0802.1798

  10. T Padmanabam, Adv. Sci. Lett. 2, 174 (2009)

    Article  Google Scholar 

  11. T Padmanabhan, Class. Quant. Grav. 4, L107 (1987)

    Article  ADS  Google Scholar 

  12. G Amelino-Camelia, Lect. Notes Phys. 541, 1 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. R J Protheroe and H Meyer, Phys. Lett. B 493, 1 (2000)

    Article  ADS  Google Scholar 

  14. D V Ahluwalia, Mod. Phys. Lett. A 17, 1135 (2002)

    Article  ADS  Google Scholar 

  15. T Jacobson, S Liberati and D Mattingly, Phys. Rev. D 66, 081302 (2002)

    Article  ADS  Google Scholar 

  16. R H Brandenberger and J Martin, Int. J. Mod. Phys. A 17, 3663 (2002)

    Article  ADS  Google Scholar 

  17. R C Myers and M Pospelov, Phys. Rev. Lett. 90, 211601 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. C Nassif, Int. J. Mod. Phys. D 25, 1650096 (2016)

    Google Scholar 

  19. C Nassif, Gen. Rel. Grav. 47, I.9 (2015)

  20. C Nassif, Int. J. Mod. Phys. D 21, 1 (2012)

    Article  Google Scholar 

  21. C Nassif, Int. J. Mod. Phys. D 19, 539 (2010)

    Article  ADS  Google Scholar 

  22. C Nassif, Pramana – J. Phys. 71, 1 (2008)

    Google Scholar 

  23. C Nassif, R F dos Santos and A C Amaro de Faria Jr., Int. J. Mod. Phys. D 27, 1850011 (2018)

  24. C Nassif, A C Amaro de Faria Jr. and R F dos Santos, Mod. Phys. Lett. A 33, 1850148 (2018)

  25. C Nassif, R F dos Santos and A C Amaro de Faria Jr., Phys. Dark Universe 22, 116 (2018)

  26. C Nassif and F A Silva, Phys. Dark Universe 22, 127 (2018)

    Article  ADS  Google Scholar 

  27. C Nassif, Mod. Phys. Lett. A 34, 1950212 (2019)

    Article  ADS  Google Scholar 

  28. K G Zloshchastiev, Acta Phys. Polon. B 42, 261 (2011)

    Article  ADS  Google Scholar 

  29. R G Vishwakarma, Class. Quant. Grav. 19, 4747 (2002)

    Article  ADS  Google Scholar 

  30. N Namavarian and M Farhoudi, Gen. Rel. Grav. 48, 140 (2016)

  31. R Aldrovandi, J P Beltran Almeida and J G Pereira, J. Geom. Phys. 56, 1042 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. R Aldrovandi, J P Beltrán Almeida and J G Pereira, Class. Quant. Grav. 24, 1385 (2007)

    Article  ADS  Google Scholar 

  33. J Greiner et al, Nature 523, 189 (2015)

    Article  ADS  Google Scholar 

  34. C Nassif, R F dos Santos and A C Amaro de Faria Jr., Phys. Dark Universe 27, 100454 (2020)

  35. E Mottola, Acta Phys. Polon. B 41, 2031 (2010)

    MathSciNet  Google Scholar 

  36. S W Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  37. H Y Guo, C G Huang and B Zhou, Europhys. Lett. 72, 1045 (2005)

    Article  ADS  Google Scholar 

  38. G W Gibbons and S W Hawking, Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, C.N. Deformed special relativity with an invariant minimum speed as an explanation of the cosmological constant. Pramana - J Phys 96, 55 (2022). https://doi.org/10.1007/s12043-022-02296-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02296-0

Keywords

PACS Nos

Navigation