Skip to main content
Log in

Bifurcations of a birhythmic model with time delays and non-Gaussian coloured noise

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effects of two kinds of time-delayed feedbacks and non-Gaussian coloured noise on modulating bifurcations in a birhythmic model have been investigated. The non-Gaussian coloured noise is approximated as an Ornstein–Uhlenbeck process using the path integral approach. Subsequently, by the conjoint of the multiscale method and random average technique, the stationary probability density function (SPDF) of the amplitude is obtained. It is concluded that either in the condition of determinacy or randomness, time delays can effectively control birhythmicity. Especially considered the presence of noise, the varying displacement delay results in multiple bifurcation in the case of single delay, while the velocity delay triggers more complex bifurcation behaviour in the case of double delays. The strength and correlation time of noise present the opposite impacts on bifurcation, so do the two delayed coefficients. Bifurcation under different excitations is analysed theoretically, and the correctness is verified by numerical simulation. Many abundant bifurcations are available by adjusting the time-delayed feedbacks and noise intensity, which may be conductive to achieve the expected phenomenon in the enzymatic–substrate reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A Engel and F Moss, Phys. Rev. A 38, 571 (1988)

    Article  ADS  Google Scholar 

  2. Y Jia and J R Li, Phys. Rev. E 53, 5764 (1996)

    Article  ADS  Google Scholar 

  3. Y Jia and J R Li, Phys. Rev. E 53, 5786 (1996)

    Article  ADS  Google Scholar 

  4. J J Collins, Phys. Rev. E 52, R3321 (1995)

    Article  ADS  Google Scholar 

  5. J J Collins, C C Chow, A C Capela and T T Imhoff, Phys. Rev. E 54, 5575 (1996)

    Article  ADS  Google Scholar 

  6. A F Rozenfeld, C J Tessone, E Albano and H S Wio, Phys. Lett. A 280, 45 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. X Q Feng and Z G Zheng, Int. J. Mod. Phys. B 19, 3501 (2005)

    Article  ADS  Google Scholar 

  8. L Schimansky-Geier and H Herzel, J. Stat. Phys. 70, 141 (1993)

    Article  ADS  Google Scholar 

  9. K R Schenkhoppe, Nonlin. Dynam. 11, 255 (1996)

    Article  Google Scholar 

  10. S R Dtchetgnia Djeundam, R Yamapi, T C Kofane and M A Aziz-Alaoui, Chaos 23, 033125 (2013)

  11. H Gzyl, Acta Appl. Math. 11, 97 (1988)

    Article  Google Scholar 

  12. Ludwig Arnold, Random dynamical systems (Springer-Verlag, New York, 1998)

    Book  MATH  Google Scholar 

  13. I Bashkirtseva, L Ryashko and P Stikhin, Int. J. Bifurc. Chaos 23, 1350092 (2013)

    Article  Google Scholar 

  14. Prajneshu, Math. Biosci. 52, 217 (1980)

    MathSciNet  Google Scholar 

  15. L R Nie and D C Mei, Phys. Rev. E 52, 031107 (2008)

  16. P Ghosh, S Sen, S S Riaz and D S Ray, Phys. Rev. E 83, 036205 (2011)

  17. H Zang, T H Zhang and Y D Zhang, Appl. Math. Comput. 260, 204 (2015)

    MathSciNet  Google Scholar 

  18. Z K Sun, J Fu, Y Z Xiao and W Xu, Chaos 25, 083102 (2015)

  19. J Fu, Z K Sun, Y Z Xiao and W Xu, Int. J. Bifurc. Chaos 26, 1650102 (2016)

    Article  Google Scholar 

  20. T Yang and Q J Cao, Nonlin. Dyn. 92, 511 (2018)

    Article  Google Scholar 

  21. Y X Zhang, Y F Jin and P F Xu, Chaos 29, 023127 (2019)

  22. D Wu and S Q Zhu, Phys. Lett. A 363, 202 (2007)

    Article  ADS  Google Scholar 

  23. P M Shi, X Su and D Y Han, Mod. Phys. Lett. B 30, L453 (2016)

    Google Scholar 

  24. X H Dong, M Wang, G Y Zhong, F Z Yang, W L Duan, J C Li, K Z Xiong and C H Zeng, Chaos 112, 1 (2018)

    Google Scholar 

  25. K K Wang, L Ju, Y J Wang and S H Li, Chaos 108, 166 (2018)

    Google Scholar 

  26. J Liu, J Cao, Y G Wang and B Hu, Physica A 517, 321 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. M A Fuentes, H S Wio and R Toral, Physica A 303, 91 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. H S Wio, P Colet, M S Miguel, L Pesquera and M A Rodríguez, Phys. Rev. A 40, 7312 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  29. P Colet, H S Wio and M M San, Phys. Rev. A 39, 6094 (1989)

    Article  ADS  Google Scholar 

  30. D Wu, X Q Luo and S Q Zhu, Physica A 373, 203 (2007)

    Article  ADS  Google Scholar 

  31. H Q Zhang, W Xu and Y Xu, Physica A 388, 781 (2009)

    Article  ADS  Google Scholar 

  32. G Goswami, P Majee, P K Ghosh and B C Bag, Physica A 374, 549 (2007)

    Article  ADS  Google Scholar 

  33. Y Huang and G Tao, Chaos 24, 033117 (2014)

  34. O Decroly and A Goldbeter, Proc. Natl. Acad. Sci. USA 79, 6917 (1982)

    Article  ADS  Google Scholar 

  35. M Alamgir and I R Epstein, J. Am. Chem. Soc. 105, 2500 (1983)

    Article  Google Scholar 

  36. S Kar and D S Ray, Eur. Phys. Lett. 67, 137 (2004)

    Article  ADS  Google Scholar 

  37. C A Kitio Kwuimy and C Nataraj, Structural nonlinear dynamics and diagnosis (Springer, Berlin, 2015)

  38. D Biswas, T Banerjee and J Kurths, Chaos 27, 063110 (2017)

  39. F Kaiser, Z. Naturforsch. A 33, 294 (1978)

  40. D Biswas, T Banerjee and J Kurths, Phys. Rev. E 94, 042226 (2016)

  41. A Chéagé Chamgoué, R Yamapi and P Woafo, Nonlin. Dyn. 73, 2157 (2013)

  42. R Mbakob Yonkeu, R Yamapi, G Filatrella and C Tchawoua, Commun. Nonlin. Sci. Numer. Simul. 33, 70 (2015)

  43. R Mbakob Yonkeu, R Yamapi, G Filatrella and C Tchawoua, Physica A 466, 552 (2017)

  44. R Yamapi, A Chéagé Chamgoué, G Filatrella and P Woafo, Phys. Condens. Matter 90, 153 (2017)

    MathSciNet  Google Scholar 

  45. R Yamapi, R Mbakob Yonkeu, G Filatrella and C Tchawoua, Commun. Nonlin. Sci. Numer. Simul. 62, 1 (2018)

    Article  MathSciNet  Google Scholar 

  46. Z D Ma and L J Ning, Int. J. Bifurc. Chaos 27, 1750202 (2017)

    Article  Google Scholar 

  47. L J Ning and Z D Ma, Int. J. Bifurc. Chaos 28, 1850127 (2018)

    Article  Google Scholar 

  48. Q Guo, Z K Sun and W Xu, Int. J. Bifurc. Chaos 28, 1850048 (2018)

    Article  Google Scholar 

  49. Q Guo, Z K Sun and W Xu, Commun. Nonlin. Sci. Numer. Simul. 72, 318 (2019)

    Article  Google Scholar 

  50. Y L Sun and L J Ning, Int. J. Bifurc. Chaos 30, 2050013 (2020)

    Article  Google Scholar 

  51. H G Enjieu Kadji, J B Chabi Orou, R Yamapi and P Woafo, Chaos 32, 862 (2007)

  52. F Kaiser, Radio Sci. 17, 17S (1982)

    Article  ADS  Google Scholar 

  53. S Bouzat and H S Wio, Physica A 351, 69 (2004)

    Article  ADS  Google Scholar 

  54. M Gaudreault, F Drolet and J Vials, Phys. Rev. E 85, 056214 (2012)

  55. J Roberts, Probab. Eng. Mech. 1, 40 (1986)

    Article  Google Scholar 

  56. J Roberts and P Spanos, Int. J. Non-Linear Mech. 21, 111 (1986)

    Article  ADS  Google Scholar 

  57. W Q Zhu, Z L Huang and Y Suzuki, Int. J. Non-Linear Mech. 36, 1235 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the National Natural Science Foundation of China under Grant No. 11202120. The authors also would like to express their appreciation to the reviewers for their insightful reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Ning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, L., Xie, L. & Wang, Y. Bifurcations of a birhythmic model with time delays and non-Gaussian coloured noise. Pramana - J Phys 96, 45 (2022). https://doi.org/10.1007/s12043-022-02294-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02294-2

Keywords

PACS Nos

Navigation