Skip to main content
Log in

Modulating bifurcations in a self-sustained birhythmic system by \(\varvec{\alpha }\)-stable Lévy noise and time delay

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Birhythmical nature has been widely encountered and has aroused considerable interest in controlling dynamic behaviors of a self-sustained birhythmic system. However, researchers focus a lot on bifurcations induced by idealized Gaussian noises, the Gaussianity of which can be violated in natural phenomena. The birhythmic oscillator is well suited for modeling biological systems, especially for simulating enzymatic reactions. There are many relevant articles, but few examine the effects of non-Gaussian noises on dynamics of birhythmic systems. \(\alpha \)-stable Lévy noise is more appropriate to characterize complicated biological surroundings. Besides, a few investigations simultaneously introduce the Lévy noise and the inevitable time delay. Control of bifurcations in a birhythmic system driven by \(\alpha \)-stable Lévy noise and time delay is numerically studied in this work, with three noise and two delay parameters treated as control parameters. Modulating the stability index and noise intensity can govern dynamics of the system, but regulating the skewness parameter cannot. More abundant bifurcations are available from adjusting the strength of delayed feedback and time delay. These results may be conducive to further exploring bifurcations in the real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  2. Goldbeter, A., Gonze, D., Houart, G., Leloup, J.C., Halloy, J., Dupont, G.: From simple to complex oscillatory behavior in metabolic and genetic control networks. Chaos 11(1), 247 (2001)

    MATH  Google Scholar 

  3. Brun, E., Derighetti, B., Meier, D., Holzner, R., Ravani, M.: Observation of order and chaos in a nuclear spin-flip laser. JOSA B 2(1), 156 (1985)

    Google Scholar 

  4. Kwuimy, C.A.K., Nataraj, C.: Recurrence and joint recurrence analysis of multiple attractors energy harvesting system. In: Belhaq, M. (ed.) Structural Nonlinear Dynamics and Diagnosis. Springer Proceedings in Physics, vol. 168, pp. 97–123. Springer, Switzerland (2015)

    Google Scholar 

  5. Alamgir, M., Epstein, I.R.: Systematic design of chemical oscillators. 17. Birhythmicity and compound oscillation in coupled chemical oscillators: chlorite–bromate–iodide system. J. Am. Chem. Soc. 105(8), 2500 (1983)

    Google Scholar 

  6. Yan, J., Goldbeter, A.: Multi-rhythmicity generated by coupling two cellular rhythms. J. R. Soc. Interface 16(152), 20180835 (2019)

    Google Scholar 

  7. Ghosh, P., Sen, S., Riaz, S.S., Ray, D.S.: Controlling birhythmicity in a self-sustained oscillator by time-delayed feedback. Phys. Rev. E 83(3), 036205 (2011)

    MathSciNet  Google Scholar 

  8. Biswas, D., Banerjee, T., Kurths, J.: Control of birhythmicity through conjugate self-feedback: theory and experiment. Phys. Rev. E 94(4), 042226 (2016)

    Google Scholar 

  9. Biswas, D., Banerjee, T., Kurths, J.: Control of birhythmicity: a self-feedback approach. Chaos 27(6), 063110 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Ma, Z., Ning, L.: Bifurcation regulations governed by delay self-control feedback in a stochastic birhythmic system. Int. J. Bifurc. Chaos 27(13), 1750202 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Biswas, D., Banerjee, T., Kurths, J.: Effect of filtered feedback on birhythmicity: suppression of birhythmic oscillation. Phys. Rev. E 99(7), 062210 (2019)

    Google Scholar 

  12. Kwuimy, C.K., Kadji, H.E.: Recurrence analysis and synchronization of oscillators with coexisting attractors. Phys. Lett. A 378(30–31), 2142 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Kar, S., Ray, D.S.: Large fluctuations and nonlinear dynamics of birhythmicity. Europhys. Lett. (EPL) 67(1), 137 (2004)

    Google Scholar 

  14. Goldbeter, A.: Dissipative structures in biological systems: bistability, oscillations, spatial patterns and waves. Philos. Trans. R. Soc. A 376(2124), 20170376 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Chéagé Chamgoué, A., Yamapi, R., Woafo, P.: Dynamics of a biological system with time-delayed noise. Eur. Phys. J. Plus 127(5), 59 (2012)

    Google Scholar 

  16. Chéagé Chamgoué, A., Yamapi, R., Woafo, P.: Bifurcations in a birhythmic biological system with time-delayed noise. Nonlinear Dyn. 73(4), 2157 (2013)

    MathSciNet  Google Scholar 

  17. Chéagé Chamgoué, A., Ngueuteu, G., Yamapi, R., Woafo, P.: Memory effect in a self-sustained birhythmic biological system. Chaos Solitons Fractals 109, 160 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Guo, Q., Sun, Z., Xu, W.: Bifurcations in a fractional birhythmic biological system with time delay. Commun. Nonlinear Sci. Numer. Simul. 72, 318 (2019)

    MathSciNet  Google Scholar 

  19. Biswas, D., Banerjee, T.: Time-Delayed Chaotic Dynamical Systems: From Theory to Electronic Experiment. Springer, NewYork (2018)

    MATH  Google Scholar 

  20. Ohira, T., Milton, J.G.: Delayed random walks. Phys. Rev. E 52, 3277 (1995)

    Google Scholar 

  21. Guillouzic, S., L’Heureux, I., Longtin, A.: Small delay approximation of stochastic delay differential equations. Phys. Rev. E 59, 3970 (1999)

    MATH  Google Scholar 

  22. Ohira, T., Yamane, T.: Delayed stochastic systems. Phys. Rev. E 61, 1247 (2000)

    Google Scholar 

  23. Milton, J.G., Cabrera, J.L., Ohira, T.: Unstable dynamical systems: delays, noise and control. Europhys. Lett. 83(4), 48001 (2008)

    MathSciNet  Google Scholar 

  24. Yang, T., Cao, Q.: Noise-induced phenomena in a versatile class of prototype dynamical system with time delay. Nonlinear Dyn. 92(2), 511 (2018)

    Google Scholar 

  25. Ning, L., Ma, Z.: The effects of correlated noise on bifurcation in birhythmicity driven by delay. Int. J. Bifurc. Chaos 28(10), 1850127 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Guo, Q., Sun, Z., Xu, W.: Stochastic bifurcations in a birhythmic biological model with time-delayed feedbacks. Int. J. Bifurc. Chaos 28(04), 1850048 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Janicki, A., Weron, A.: Simulation and Chaotic Behavior of \(\alpha \)-Stable Stochastic Processes. Marcel Dekker, New York (1994)

    MATH  Google Scholar 

  28. Xu, Y., Feng, J., Li, J., Zhang, H.: Stochastic bifurcation for a tumor-immune system with symmetric Lévy noise. Physica A 392(20), 4739 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Shlesinger, M.F., Zaslavsky, G.M., Frisch, U.: Lévy Flights and Related Topics in Physics. Springer, Berlin (1995)

    MATH  Google Scholar 

  30. Ibragimov, M., Ibragimov, R., Walden, J.: Heavy-Tailed Distributions and Robustness in Economics and Finance. Springer, New York (2015)

    MATH  Google Scholar 

  31. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075), 462 (2006)

    Google Scholar 

  32. Ditlevsen, P.D.: Observation of \(\alpha \)-stable noise induced millennial climate changes from an ice-core record. Geophys. Res. Lett. 26(10), 1441 (1999)

    Google Scholar 

  33. Dybiec, B., Gudowska-Nowak, E.: Lévy stable noise-induced transitions: stochastic resonance, resonant activation and dynamic hysteresis. J. Stat. Mech. 2009(05), P05004 (2009)

    Google Scholar 

  34. Xu, Y., Li, Y., Li, J., Feng, J., Zhang, H.: The phase transition in a bistable Duffing system driven by Lévy noise. J. Stat. Phys. 158(1), 120 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Xu, Y., Li, Y., Zhang, H., Li, X., Kurths, J.: The switch in a genetic toggle system with Lévy noise. Sci. Rep. 6, 31505 (2016)

    Google Scholar 

  36. Cai, R., Chen, X., Duan, J., Kurths, J., Li, X.: Lévy noise-induced escape in an excitable system. J. Stat. Mech. 2017(6), 063503 (2017)

    Google Scholar 

  37. Dubkov, A.A., Spagnolo, B., Uchaikin, V.V.: Lévy flight superdiffusion: an introduction. Int. J. Bifurc. Chaos 18(09), 2649 (2008)

    MATH  Google Scholar 

  38. Ken Iti, S.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  39. Samoradnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York (1994)

    Google Scholar 

  40. Chambers, J.M., Mallows, C.L., Stuck, B.W.: A method for simulating stable random variables. J. Am. Stat. Assoc. 71(354), 340 (1976)

    MathSciNet  MATH  Google Scholar 

  41. Weron, A., Weron, R.: Computer simulation of Lévy \(\alpha \)-stable variables and processes. In: Garbaczewski, P., Wolf, M., Weron, A. (eds.) Lecture Notes in Physics, pp. 379–392. Springer, New York (1995)

    MATH  Google Scholar 

  42. Weron, R.: On the Chambers–Mallows–Stuck method for simulating skewed stable random variables. Stat. Probab. Lett. 28(2), 165 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the National Natural Science Foundation of China under Grant No. 11202120 and the Fundamental Research Funds for the Central Universities under No. GK201901008. The authors also would like to express their appreciation to the reviewers for their insightful reading and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Ning.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, L., Sun, Y. Modulating bifurcations in a self-sustained birhythmic system by \(\varvec{\alpha }\)-stable Lévy noise and time delay. Nonlinear Dyn 98, 2339–2347 (2019). https://doi.org/10.1007/s11071-019-05332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05332-8

Keywords

Navigation