Skip to main content
Log in

A new analytical method to the conformable chiral nonlinear Schrödinger equation in the quantum Hall effect

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, our goal is to find more general exact travelling wave solutions of the (1\(+\)1)- and (2\(+\)1)-dimensional nonlinear chiral Schrödinger equation with conformable derivative by using a newly developed analytical method. The governing model has a very important role in quantum mechanics, especially in the field of quantum Hall effect where chiral excitations are present. In two-dimensional electron systems, subjected to strong magnetic fields and low temperatures, the quantum Hall effect can be observed. By using the method, called the rational sine-Gordon expansion method which is a generalised form of the sine-Gordon expansion method, we found complex dark and bright solitary wave solutions. These solutions have important applications in the quantum Hall effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S Kumar and D Kumar Pramana – J. Phys. 95, 1 (2021)

    Article  ADS  Google Scholar 

  2. S Kumar, M Kumar and D Kumar, Pramana – J. Phys. 94, 1 (2020)

    Article  Google Scholar 

  3. S Tuluce Demiray and H Bulut, Numer. Methods Partial Differ. Equ. 8, 401 (2020)

  4. D Kaya, A Yokus and U Demiroglu, Comparison of exact and numerical solutions for the Sharma–Tosso–Olver equation, in: Numerical solutions of realistic nonlinear phenomena edited by J Machado and N Özdemir and D Baleanu (Springer, Cham, 2020) Vol. 31, p. 53

  5. E Fan, Phys. Lett. A 294, 26 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. D Lu, A R Seadawy and I Ahmed, Mod. Phys. Lett. B 33, 1950363 (2019)

    Article  ADS  Google Scholar 

  7. R Hirota, Phys. Rev. Lett. 27, 1192 (1971)

    Article  ADS  Google Scholar 

  8. R Hirota, The direct method in soliton theory (Cambridge University Press, 2004)

  9. Y Shen, B Tian, X Zhao, W-R Shan and Y Jiang, Pramana – J. Phys. 95 1 (2021)

    Article  ADS  Google Scholar 

  10. C Yan, Phys. Lett. A 224, 77 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  11. W Gao, G Yel, H M Baskonus and C Cattani, Aims Math. 5, 507 (2020)

    Article  MathSciNet  Google Scholar 

  12. H M Baskonus and C Cattani, Nonlinear dynamical model for DNA (Springer, 2018) p. 115

  13. G Yel and T Aktürk, Appl. Math. Nonlinear Sci. 5, 309 (2020)

    Article  MathSciNet  Google Scholar 

  14. H I Abdel-Gawad, Pramana – Phys. 95, 1 (2021)

    Article  ADS  Google Scholar 

  15. Z Rahman et al, PramanaJ. Phys. 95, 134 (2021)

  16. Y Wang and B Gao, Pramana – J. Phys. 95, 129 (2021)

    Article  Google Scholar 

  17. U Aglietti, L Griguolo, R Jackiw, S-Y Pi and D Seminara, Phys. Rev. Lett. 77, 4406 (1996)

    Article  ADS  Google Scholar 

  18. R Jackiw and S-Y Pi, Phys. Rev. Lett. 64, 2969 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  19. R Jackiw and S-Y Pi, Phys. Rev. D 44, 2524 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  20. J-H Lee, C-K Lin and O K Pashaev, Chaos Solitons Fractals 19, 109 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. A Nishino, Y Umeno and M Wadati, Chaos Solitons Fractals 9, 1063 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. A Biswas, Nucl. Phys. B 806, 457 (2009)

    Article  ADS  Google Scholar 

  23. A Biswas, Int. J. Theor. Phys. 48, 3403 (2009)

    Article  Google Scholar 

  24. A Biswas, Int. J. Theor. Phys. 49, 79 (2010)

    Article  Google Scholar 

  25. A Biswas and D Milovic, Phys. At. Nuclei 74, 755 (2011)

    Article  ADS  Google Scholar 

  26. G Ebadi, A Yildirim and A Biswas, Rom. Rep. Phys. 64, 357 (2012)

    Google Scholar 

  27. M Younis, N Cheemaa, S A Mahmood and S T R Rizvi, Opt. Quantum Electron. 48, 1 (2016)

    Article  Google Scholar 

  28. T A Sulaiman, H Bulut and H M Baskonus, Construction of various soliton solutions via the simplified extended sinh-Gordon equation expansion method (EDP Sciences, 2018) p. 1062

  29. H Bulut, T A Sulaiman and B Demirdag, Nonlinear Dynam. 91, 1985 (2018)

    Article  Google Scholar 

  30. N Raza and A Javid, Waves Random Complex Media  29, 496 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. R Khalil, M Al Horani, A Yousef and M Sababheh, J. Comput. Appl. Math. 264, 65 (2014)

  32. G Yel, T A Sulaiman and H M Baskonus, Mod. Phys. Lett. B 34, 2050069 (2020)

    Article  ADS  Google Scholar 

  33. G Yel and H M Baskonus, Pramana – J. Phys. 93, 1 (2019)

    Article  Google Scholar 

  34. K D Park, Lect. Notes Math (2010)

  35. A Atangana, D Baleanu and A Alsaedi, Open Math. 13 (2015)

  36. T Abdeljawad, J. Comput. Appl. Math. 279, 57 (2015)

    Article  MathSciNet  Google Scholar 

  37. S B Yamgoue, G R Deffo and F B Pelap, The Eur. Phys. J. Plus 134, 1 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülnur Yel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yel, G., Bulut, H. & İlhan, E. A new analytical method to the conformable chiral nonlinear Schrödinger equation in the quantum Hall effect. Pramana - J Phys 96, 54 (2022). https://doi.org/10.1007/s12043-022-02292-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02292-4

Keywords

PACS

Navigation