Skip to main content
Log in

Stability analysis of HIV/AIDS dynamics: Modelling the tested and untested populations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this manuscript, the dynamic behaviour of a nonlinear HIV/AIDS dynamics model using HIV infected population is proposed. Here, we divide the HIV infected population into two subclasses: the tested and untested HIV infected populations. The novel part of the model is that when susceptible population interacts with the untested HIV infected population, the susceptible population is shifted to untested HIV infected population. Otherwise, it is transferred to tested HIV infected population, while many researchers have taken this infection as tested HIV infected population. For infection-free equilibrium point, we determine the basic reproduction number and explore the existence and local stability of equilibrium point. For two endemic equilibrium states, we investigate the positivity and stability of equilibrium points and determine the conditions where it exists. The Routh–Hurwitz criterion and Bellman and Cooke’ theorem are used to establish the stability of the non-infected and two endemic equilibrium states. Numerical simulations for all equilibria are also carried out to examine the behaviour of the system in different dynamical regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A K Misra, A Sharma and J B Shukla, Biosystems 138, 53 (2015)

    Article  Google Scholar 

  2. J D Murray, Introduction to mathematical biology: I. An Introduction (Springer, Berlin, 2002)

    Google Scholar 

  3. P K Roy, S Saha and F A Basir, Adv. Differ. Equ. 217, 1 (2015)

    Google Scholar 

  4. S Samanta, S Rana, A Sharma, A K Misra and J Chaattopadhyay, Appl. Math. Comput. 219, 6965 (2013)

    MathSciNet  Google Scholar 

  5. R Naresh, A Tripathi and D Sharma, Math. Comput. Model. 49, 880 (2009)

    Article  Google Scholar 

  6. D Tripathi, A Sharma, O A Bég and A Tiwari, J. Therm. Sci. Eng. Appl. 9, 041010 (2017)

    Article  Google Scholar 

  7. D Tripathi, S Bhushan and O A Bég, J. Mech. Med. Biol. 17, 1750052 (2017)

    Article  Google Scholar 

  8. K O Okosun, O D Makinde and I Takaidza, Appl. Math. Model. 37, 3802 (2013)

    Article  MathSciNet  Google Scholar 

  9. L Cai, S Guo and S Wang, Appl. Math. Comput. 236, 621 (2014)

    MathSciNet  Google Scholar 

  10. M I Daabo, O D Makinde and B Seidu, Afr. J. Biotechnol. 11(51), 11287 (2012)

    Google Scholar 

  11. R Safiel, E S Massawe and D O Makinde, Am. J. Math. Stat. 2(4), 75 (2012)

    Article  Google Scholar 

  12. N Kaur, M Ghosh and S Bhatia, World J. Model. Simul. 12(2), 97 (2016)

    Google Scholar 

  13. A E Lekan, A A Momoh, A Tahir and U M Modibbo. Pac. J. Sci. Technol. 16(2), 225 (2015)

    Google Scholar 

  14. M I Daabo and B Seidu, Adv. Appl. Math. Biosci. 3(1), 31 (2012)

    Google Scholar 

  15. P K Gupta and A Dutta, Eur. Phys. J. Plus 134(65), 1 (2019)

    Google Scholar 

  16. A Dutta and P K Gupta, Chin. J. Phys. 56(3), 1045 (2018)

    Article  Google Scholar 

  17. P V Driessche and J Watmough, J. Watmough, Math. Biosci. 180, 29 (2002)

    Article  MathSciNet  Google Scholar 

  18. R Bellman and K C Cooke, Differential difference equation (Academic Press, London, UK, 1963)

    Book  Google Scholar 

Download references

Acknowledgements

The first author Ajoy Dutta is extending his gratitude to the Ministry of Human Resource and Development, Govt. of India for providing him the Ph.D. fellowship under the supervision of Dr. Praveen Kumar Gupta. The authors are also very thankful to the editor and anomalous reviewers for his/her valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Gupta.

Appendix

Appendix

The characteristic equation of the Jacobian matrix at the endemic state \(E_2\) for model (6)–(10) is

$$\begin{aligned}&H(\lambda )= \bigg (\lambda ^{4}+\lambda ^{3}\left( k_1+k_2+k_3+\frac{N_2(4d-\sigma +\tau )+(2I_{12}-N_2)\gamma _1\delta _1+(2I_{22}-N_2)\gamma _2\delta _2}{N_2}\right) \nonumber \\&~~~~~~~~~~~~~ +\lambda ^{2} \bigg ( \frac{1}{N_{2}^{2}}(3dN_{2}^{2}(2d-\sigma +\tau ) +3dN_{2}^{2}k_3-N_{2}^{2}\sigma k_3+N_{2}^{2}\tau k_3+6dI_{12}N_2\gamma _1\delta _1 -3dN_{2}^{2}\gamma _1\delta _1\nonumber \\&~~~~~~~~~~~~~ -AI_{12}\sigma \gamma _1\delta _1-I_{12}^{2}\sigma \gamma _1\delta _1 -I_{12}I_{22}\sigma \gamma _1\delta _1+I_{12}N_2\tau \gamma _1\delta _1 +2I_{12}N_2k_3\gamma _1\delta _1-N_{2}^{2}k_3\gamma _1\delta _1 \nonumber \\&~~~~~~~~~~~~~ +\gamma _2((2I_{22} -N_2)N_2(3d-\sigma +\tau +k_3)+(3I_{12}I_{22} -2(I_{12}+I_{22})N_2+N_{2}^{2})\gamma _1\delta _1)\delta _2 \nonumber \\&~~~~~~~~~~~~~ +N_2k_2(N_2(3d-\sigma +\tau )+N_2k_3+(2I_{22}-N_2)\gamma _1\delta _1+I_{22}\gamma _2\delta _2)+N_2k_1(3dN_2+N_2k_2+N_2k_3 \nonumber \\&~~~~~~~~~~~~~ +I_{12}\gamma _1\delta _1+(2I_{22}-N_2)\gamma _2\delta _2))\bigg ) +\lambda \bigg (\frac{1}{N_{2}^{3}}(d^{2}N_{2}^{3}(4d-3\sigma -3\tau ) +3d^{2}N_{2}^{3}k_3-2dN_{2}^{3}\sigma k_3\nonumber \\&~~~~~~~~~~~~~ +2dN_{2}^{3}\tau k_3 +6d^{2}N_{2}^{2}I_{12}\gamma _1\delta _1-3d^{2}N_{2}^{3}\gamma _1\delta _1 -2AI_{12}N_2\sigma \gamma _1\delta _1-2dI_{1}^{2}N_1\sigma \gamma _1\delta _1 -2dI_{12}I_{22}\sigma \gamma _1\delta _1 \nonumber \\&~~~~~~~~~~~~~ +2dI_1N_{1}^{2}\tau \gamma _1\delta _1 +4dI_1N_{1}^{2}k_3\gamma _1\delta _1-2dN_{1}^{3}k_3\gamma _1\delta _1 -AI_1N_1\sigma k_3\gamma _1\delta _1-I_{12}^{2}N_2\sigma k_3\gamma _1\delta _1\nonumber \\&~~~~~~~~~~~~~ -I_{22}I_{12}N_2\sigma k_3\gamma _1\delta _1+I_{12}N_{2}^{2}\tau k_3\gamma _1\delta _1 +\gamma _2((2I_{22}-N_2)N_{2}^{2}(d(3d-2\sigma +2\tau ) +(2d-\sigma +\tau )k_3))\nonumber \\&~~~~~~~~~~~~~ +(2dN_2(3I_{22}I_{12} -2(I_{22}+I_{12})N_2+N_{2}^{2})+I_{12}(A+I_{22}+I_{12})(-I_{12}+N_2)\sigma +N_2(3I_{22}I_{12}\nonumber \\&~~~~~~~~~~~~~ -2(I_{22}+I_{12})N_2+N_{2}^{2})k_3)\gamma _1\delta _1)\delta _2 +N_2k_1(dN_2+(3dN_2+2I_{12}\gamma _1\delta _1) +\gamma _2(2d(2I_{22}-N_2)N_2\nonumber \\&~~~~~~~~~~~~~ +I_{12}(I_{22}-N_2)\gamma _1\delta _1)\delta _2 +N_2k_2(2dN_2+N_2k_3+I_{12}\gamma _1\delta _1 +I_{22}\gamma _2\delta _2)\nonumber \\&~~~~~~~~~~~~~+k_3(2dN_{2}^{2}+I_{12}(A+I_{22}+I_{12})\gamma _1\delta _1 +(2I_{22}-N_2)N_2\gamma _2\delta _2)) \nonumber \\&~~~~~~~~~~~~~ +N_2k_2(k_3(N_{2}^{2}(2d-\sigma +\tau )+\gamma _1\delta _1(2I_{22}-N_2)N_2 +I_{22}(A+I_{22}+I_{12})\gamma _2\delta _2) \nonumber \\&~~~~~~~~~~~~~ +\gamma _1\delta _1(2d(2I_{12}-N_2)N_2-I_{12}(A+I_{22}+I_{12})\sigma +I_{12}N_2\tau +I_{22}(I_{12}-N_2)\gamma _2\delta _2) \nonumber \\&~~~~~~~~~~~~~ +N_2(dN_2(3d-2\sigma +2\tau )+I_{22}(2d-\sigma +\tau )\gamma _2\delta _2)\bigg )\bigg )+\frac{1}{N_{2}^{3}}\bigg ( k_1(N_2(d+k_2)(dN_{2}^{2}(d +k_3) \nonumber \\&~~~~~~~~~~~~~ +I_{12}(dN_2+(A+I_{22}+I_{12})k_3)\gamma _1\delta _1) +\gamma _2(d(2I_{22}-N_2)N_{2}^{2}(d+k_3)\nonumber \\&~~~~~~~~~~~~~ +I_{22}N_2k_2(dN_2+(A+I_{22}+I_{12})k_3)+I_{12}(I_{12}-N_2)(dN_2+(A+I_{22} +I_{12})k_3)\gamma _1\delta _1)\delta _2) \nonumber \\&~~~~~~~~~~~~~ +(d+k_3)(dN_{2}^{2}(d-\sigma +\tau )(dN_2+(2I_{12}-N_2)\gamma _2\delta _2) +\gamma _1\delta _1(-dN_2(dN_2(-2I_{12}+N_2) \nonumber \\&~~~~~~~~~~~~~ +I_{12}(A+I_{22}+I_{12})\sigma -I_{12}N_2\tau )+(dN_2(3I_{22}I_{12}-2(I_{22}+I_{12})N_2+N_{2}^{2}) +I_{12}(A+I_{22}+I_{12})\nonumber \\&~~~~~~~~~~~~~ (-I_{12}+N_2)\sigma )\gamma _2\delta _2)) +k_2(k_3(dN_{2}^{3}(d-\sigma +\tau )+N_2(d(2I_{12}-N_2)N_2\nonumber \\&~~~~~~~~~~~~~ -I_{12}(A+I_{22}+I_{12})(\sigma -\tau ))\gamma _1\delta _1 +I_{22}(A+I_{22}+I_{12})\gamma _2(N_2(d-\sigma +\tau )\nonumber \\&~~~~~~~~~~~~~ +(I_{12}-N_2)\gamma _1\delta _1)\delta _2) +dN_2(N_2(d-\sigma +\tau )(dN_2+I_{22}\gamma _2 \delta _2)\gamma _1\delta _1\nonumber \\&~~~~~~~~~~~~~ \times (d(2I_{12}-N_2)N_2-I_{12}(A+I_{22}+I_{12})\sigma +I_{12}N_2\tau +I_{22}(I_{12}-N_2)\gamma _2\delta _2)))\bigg ). \end{aligned}$$
(A.1)

As a result of Theorem 3.3, first we substitute \(\lambda =iq\) into eq. (A.1), and we write \(H(iq)=F(q)+iG(q)\), where F(q) and G(q) are the real and imaginary parts of H(iq). To define zeros, substitute \(q=0\) and calculate \(F(0), G(0), F'(0)\) and \(G'(0)\), as follows:

$$\begin{aligned} F(0)&=\, \frac{1}{N_{2}^{3}}(k_1(N_2(d+k_2)(dN_{2}^{2}(d+k_3)\nonumber \\&\quad +I_{12}(dN_2+(A+I_{22}+I_{12})k_3)\gamma _1\delta _1) \nonumber \\&\quad +\gamma _2(d(2I_{22}-N_2)N_{2}^{2}(d+k_3)\nonumber \\&\quad +I_{22}N_2k_2(dN_2+(A+I_{22}+I_{12})k_3) \nonumber \\&\quad +I_{12}(I_{22}-N_2)(dN_2+(A+I_{22}+I_{12})k_3)\nonumber \\&\quad \times \gamma _1\delta _1)\delta _2) +(d+k_3)(dN_{2}^{2}(d-\sigma +\tau )(dN_2 \nonumber \\&\quad +(2I_{12}-N_2)\gamma _2\delta _2)+\gamma _1\delta _1(-dN_2(dN_2(-2I_{12}\nonumber \\&\quad +N_2)+I_{12}(A+I_{22}+I_{12})\sigma \nonumber \\&\quad -I_{12}N_2\tau )+(dN_2(3I_{22}I_{12}-2(I_{22}+I_{12})N_2\nonumber \\&\quad +N_{2}^{2})+I_{12}(A+I_{22}+I_{12})(-I_{12} \nonumber \\&\quad +N_2)\sigma )\gamma _2\delta _2))+k_2(k_3(dN_{2}^{3}\nonumber \\&\quad \times (d-\sigma +\tau )+N_2(d(2I_{12}-N_2)N_2 \nonumber \\&\quad -I_{12}(A+I_{22}+I_{12})(\sigma -\tau ))\gamma _1\delta _1\nonumber \\&\quad +I_{22}(A+I_{22}+I_{12})\gamma _2(N_2(d-\sigma +\tau ) \nonumber \\&\quad +(I_{12}-N_2)\gamma _1\delta _1)\delta _2)\nonumber \\&\quad +dN_2(N_2(d-\sigma +\tau )(dN_2+I_{22}\gamma _2\delta _2)\nonumber \\&\quad +\gamma _1\delta _1(d(2I_{12}-N_2)N_2 \nonumber \\&\quad -I_{12}(A+I_{22}+I_{12})\sigma \nonumber \\&\quad +I_{12}N_2\tau +I_{22}(I_{12}-N_2)\gamma _2\delta _2))) \end{aligned}$$
(A.2)
$$\begin{aligned} G(0)=0 \end{aligned}$$
(A.3)
$$\begin{aligned} F'(0)=0 \end{aligned}$$
(A.4)
$$\begin{aligned} G(0)&=\, \Big ( \frac{1}{N_{2}^{3}}(d^{2}N_{2}^{3}(4d-3\sigma -3\tau )\nonumber \\&\quad +3d^{2}N_{2}^{3}k_3-2dN_{2}^{3}\sigma k_3+2dN_{2}^{3}\tau k_3\nonumber \\&\quad +6d^{2}N_{2}^{2}I_{12}\gamma _1\delta _1 \!-\!3d^{2}N_{2}^{3}\gamma _1\delta _1\nonumber \\&\quad -2AdI_{12}N_2\sigma \gamma _1\delta _1-2dI_{1}^{2}N_1\sigma \gamma _1\delta _1 \nonumber \\&\quad -2dI_{12}I_{22}N_1\sigma \gamma _1\delta _1 +2dI_1N_{1}^{2}\tau \gamma _1\delta _1\nonumber \\&\quad +4dI_1N_{1}^{2}k_3\gamma _1\delta _1-2dN_{1}^{3}k_3\gamma _1\delta _1\nonumber \\&\quad -AI_1N_1\sigma k_3\gamma _1\delta _1-I_{12}^{2}N_2\sigma k_3\gamma _1\delta _1 \nonumber \\&\quad -I_{22}I_{12}N_2\sigma k_3\gamma _1\delta _1+I_{12}N_{2}^{2}\tau k_3\gamma _1\delta _1\nonumber \\&\quad +\gamma _2((2I_{22}-N_2)N_{2}^{2}(d(3d-2\sigma +2\tau ) \nonumber \\&\quad +(2d-\sigma +\tau )k_3))+(2dN_2(3I_{22}I_{12}\nonumber \\&\quad -2(I_{22}+I_{12})N_2+N_{2}^{2})\nonumber \\&\quad +I_{12}(A+I_{22}+I_{12})(-I_{12} \nonumber \\&\quad +N_2)\sigma +N_2(3I_{22}I_{12}-2(I_{22}+I_{12})N_2\nonumber \\&\quad +N_{2}^{2})k_3)\gamma _1\delta _1)\delta _2+N_2k_1(dN_2+(3dN_2 \nonumber \\&\quad +2I_{12}\gamma _1\delta _1)+\gamma _2(2d(2I_{22}-N_2)N_2\nonumber \\&\quad +I_{12}(I_{22}-N_2)\gamma _1\delta _1)\delta _2+N_2k_2(2dN_2 \nonumber \\&\quad +N_2k_3+I_{12}\gamma _1\delta _1+I_{22}\gamma _2\delta _2) \nonumber \\&\quad +k_3(2dN_{2}^{2}+I_{12}(A+I_{22}+I_{12})\gamma _1\delta _1+(2I_{22} \nonumber \\&\quad -N_2)N_2\gamma _2\delta _2))+N_2k_2(k_3(N_{2}^{2}(2d-\sigma +\tau )\nonumber \\&\quad +\gamma _1\delta _1(2I_{22}-N_2)N_2+I_{22}(A+I_{22} \nonumber \\&\quad +I_{12})\gamma _2\delta _2)+\gamma _1\delta _1(2d(2I_{12}\nonumber \\&\quad -N_2)N_2-I_{12}(A+I_{22}+I_{12})\sigma \nonumber \\&\quad +I_{12}N_2\tau +I_{22}(I_{12} \nonumber \\&\quad -N_2)\gamma _2\delta _2)+N_2(dN_2(3d-2\sigma +2\tau )\nonumber \\&\quad +I_{22}(2d-\sigma +\tau )\gamma _2\delta _2))\Big ). \end{aligned}$$
(A.5)

For model (6)–(10), the characteristic eq. (A.1) shows that the eigenvalues are real and negative if it follows the inequality,

$$\begin{aligned} F(0)G^\prime (0)-F^\prime (0)G(0)>0 \end{aligned}$$
(A.6)

which is the stability condition. From eqs (A.2)–(A.5), inequality (A.6) becomes

$$\begin{aligned} J\equiv F(0)G^\prime (0)>0. \end{aligned}$$
(A.7)

In [18], Bellman and Cooke state that the equilibrium point will be stable when \(J>0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Gupta, P.K. Stability analysis of HIV/AIDS dynamics: Modelling the tested and untested populations. Pramana - J Phys 96, 42 (2022). https://doi.org/10.1007/s12043-021-02288-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02288-6

Keywords

PACS Nos

Navigation