Skip to main content
Log in

Cross-over from microcanonical ensemble to canonical ensemble by using Gaussian ensemble for a long-range interacting spin chain

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Contrary to the common thermodynamic systems, systems with long-range interaction may cause non-concavity of \(s(\varepsilon )\) curves. In this paper, we propose a long-range interacting Ising chain in a staggered magnetic field model which has a non-concave entropy part. In this model, the first phase transition is accompanied by the phenomenon of temperature jump in microcanonical ensemble when proper magnetic field intensity is met, while this jump cannot be observed in canonical ensemble, which shows the non-equivalence of different ensembles. To exhibit the cross-over process from microcanonical to canonical, the cross-over phase transition properties are exhibited recently by putting the chain in thermal contact with an adjustable two-level heat reservoir. In this paper, we introduce a different method by employing Gaussian ensemble to show the cross-over process reversely, i.e., from canonical to microcanonical ensembles. As shown in this paper, by adjusting the parameters of the supporting parabolas in the Gaussian ensemble, one can observe the caloric curve of the system in any Gaussian ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T Dauxois, S Ruffo, M Wilkens and E Arimondo, Dynamics and thermodynamics of systems with long-range interactions (Springer, New York, 2002)

    Book  Google Scholar 

  2. T Dauxois, S Ruffo and L F Cugliandolo, Long-range interacting systems (Oxford University Press, Oxford, 2010)

    MATH  Google Scholar 

  3. D Mukamel, S Ruffo and N Schreiber, Phys. Rev. Lett. 95, 240604 (2005)

    Article  ADS  Google Scholar 

  4. J Barré, D Mukamel and S Ruffo, Phys. Rev. Lett. 87, 030601 (2001)

    Article  ADS  Google Scholar 

  5. L C Sampaio, E H C P Sinnecker, G R C Cernicchiaro, M Knobel, M Vázquez and J Velázquez, Phys. Rev. B 61(13), 8976 (2000)

    Article  ADS  Google Scholar 

  6. F Bouchet and A Venaille, Phys. Rep. 515, 227 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  7. D R Nicholson, Introduction to plasma theory (Wiley, New York, 1983)

    Google Scholar 

  8. J Binney and S Tremaine, Galactic dynamics (Princeton Univ. Press, Princeton, 2008)

    Book  MATH  Google Scholar 

  9. A Ramírez-Hernández, H Larralde and F Leyvraz, Phys. Rev. Lett. 100, 120601 (2008)

    Article  ADS  Google Scholar 

  10. A Ramírez-Hernández, H Larralde and F Leyvraz, Phys. Rev. E 78, 061133 (2008)

    Article  ADS  Google Scholar 

  11. M Baldovin, Phys. Rev. E 98, 012121 (2018)

    Article  ADS  Google Scholar 

  12. F Miceli, M Baldovin and A Vulpiani, Phys. Rev. E 99, 042152 (2019)

    Article  ADS  Google Scholar 

  13. A Campa, T Dauxois and S Ruffo, Phys. Rep. 480, 57 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. D Lynden-Bell and R Wood, Mon. Not. R. Astron. Soc. 138, 495 (1968)

    Article  ADS  Google Scholar 

  15. D Lynden-Bell, Physica A 263, 293 (1999)

    Article  ADS  Google Scholar 

  16. F Bouchet, S Gupta and D Mukamel, Physica A 389, 4389 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. V V Hovhannisyan, N S Ananikian, A Campa and S Ruffo, Phys. Rev. E 96, 062103 (2017)

    Article  ADS  Google Scholar 

  18. T M Rocha-Filho, C H Silvestre and M A Amato, Commun. Nonlinear Sci. Numer. Simul. 59, 190 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. A Vulpiani, F Cecconi, M Cencini, A Puglisi and D Vergni, Large deviations in physics (Springer, Berlin, Heidelberg, 2014)

    Book  MATH  Google Scholar 

  20. V V Prasad, A Campa, D Mukamel and S Ruffo, Phys. Rev. E 100, 052135 (2019)

    Article  ADS  Google Scholar 

  21. P Hertel and W Thirring, Ann. Phys. 63, 520 (1971)

    Article  ADS  Google Scholar 

  22. J X Hou, X C Yu and J M Hou, Int. J. Theor. Phys. 55, 3923 (2016)

    Article  Google Scholar 

  23. J X Hou and X C Yu, Mod. Phys. Lett. B 32, 1850053 (2018)

    Article  ADS  Google Scholar 

  24. Z Y Yang and J X Hou, Mod. Phys. Lett. B 33, 1950072 (2019)

    Article  ADS  Google Scholar 

  25. Z Y Yang and J X Hou, Eur. Phys. J. B 92(8), 170 (2019)

    Article  ADS  Google Scholar 

  26. J X Hou, Phys. Rev. E 99, 052114 (2019)

    Article  ADS  Google Scholar 

  27. Z X Li, Y C Yao, S Zhang and J X Hou, Mod. Phys. Lett. B 34, 2050318 (2020)

    Article  ADS  Google Scholar 

  28. Z Y Yang and J X Hou, Phys. Rev. E 101, 052106 (2020)

    Article  ADS  Google Scholar 

  29. J X Hou, Eur. Phys. J. B 93, 82 (2020)

    Article  ADS  Google Scholar 

  30. Y C Yao and J X Hou, Int. J. Theor. Phys. 60, 968 (2021)

    Article  Google Scholar 

  31. S Y Jiao and J X Hou, Mod. Phys. Lett. B 35, 2150095 (2021)

    Article  ADS  Google Scholar 

  32. J X Hou, Eur. Phys. J. B 94, 6 (2021)

    Article  ADS  Google Scholar 

  33. J X Hou, Phys. Rev. E 104, 024114 (2021)

    Article  ADS  Google Scholar 

  34. J X Hou, Eur. Phys. J. B 94, 151 (2021)

    Article  ADS  Google Scholar 

  35. E A Guggenheim, J. Chem. Phys. 7, 103 (1939)

    Article  ADS  Google Scholar 

  36. M Kardar, Statistical physics of particles (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  37. D Ruelle, Statistical mechanics: Rigorous results (W A Benjamin Inc, New York, 1969)

    MATH  Google Scholar 

  38. J X Hou and J Yang, Pramana – J. Phys. 87, 60 (2016)

  39. J X Hou, Mod. Phys. Lett. B 34, 2050410 (2020)

    Article  ADS  Google Scholar 

  40. J X Hou, Phys. Rev. E 102, 036101 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  41. J X Hou, Physica A 558, 124963 (2020)

    Article  Google Scholar 

  42. R B Frigori, L G Rizzi and N A Alves, Eur. Phys. J. B 75, 311 (2010)

    Article  ADS  Google Scholar 

  43. M Costeniuc, R S Ellis, H Touchette and B Turkington, Phys. Rev. E 73, 026105(2006)

    Article  ADS  MathSciNet  Google Scholar 

  44. M Kac, G E Uhlenbeck and P C Hemmer, J. Math. Phys. 4, 216 (1963)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the Educational Reform and Research Foundation of Southeast University under Grant 2019-074 and the Physical Education Foundation of Higher Education Steering Committee of the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Xuan Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, YC., Hou, JX. Cross-over from microcanonical ensemble to canonical ensemble by using Gaussian ensemble for a long-range interacting spin chain. Pramana - J Phys 96, 36 (2022). https://doi.org/10.1007/s12043-021-02284-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02284-w

Keywords

PACS Nos

Navigation