Skip to main content
Log in

From microcanonical ensemble to canonical ensemble: phase transitions of a spin chain with a long-range interaction

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A long-range interacting spin chain placed in a staggered magnetic field can exhibit either first order phase transition or second order phase transition depending on the magnetic field intensity. The first order phase transition of this model is known to be accompanied with the temperature jump phenomenon in the microcanonical ensemble, while this anomalous temperature jump phenomenon can not be observed in the canonical ensemble. We obtain the crossover phase transition properties passing from a microcanonical to a canonical ensemble, by placing this previously isolated spin chain model in contact with a two-level system that acts as a thermal reservoir. The magnitude of the temperature jump monotonically decreases with the increase of the size of the thermal reservoir. And the microcanonical phase diagram can gradually turn into the canonical phase diagram by increasing the number of particles of the reservoir.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Guggenheim, J. Chem. Phys. 7, 103 (1939)

    Article  ADS  Google Scholar 

  2. T.L. Hill, R.V. Chamberlin, Nano Lett. 2, 609 (2002)

    Article  ADS  Google Scholar 

  3. D. Ruelle,Statistical Mechanics: Rigorous Results (W A. Benjamin Inc, New York, 1969)

  4. W. Thirring, Z. Phys. 235, 339 (1970)

    Article  ADS  Google Scholar 

  5. P. Hertel, W. Thirring, Ann. Phys. 63, 520 (1971)

    Article  ADS  Google Scholar 

  6. T. Dauxois, S. Ruffo, M. Wilkens, E. Arimondo,Dynamics and Thermodynamics of Systems with Long-Range Interactions (Springer, New York, 2002)

  7. T. Dauxois, S. Ruffo, L.F. Cugliandolo,Long-Range Interacting Systems (Oxford University Press, Oxford, 2010)

  8. F. Bouchet, A. Venaille, Phys. Rep. 515, 227 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Binney, S. Tremaine,Galactic Dynamics (Princeton Univ. Press, Princeton, 2008)

  10. D.R. Nicholson,Introduction to Plasma Theory (Wiley, New York, 1983)

  11. G. Morigietal, et al., inAIP Conference Proceedings, edited by A. Campa, A. Giansanti, G. Morigi, F. Sylos-Labini (AIP, Melville, New York, 2008), Vol. 970, pp. 289–361

  12. D. Mukamel, S. Ruffo, N. Schreiber, Phys. Rev. Lett. 95, 240604 (2005)

    Article  ADS  Google Scholar 

  13. A. Ramírez-Hernández, H. Larralde, F. Leyvraz, Phys. Rev. Lett. 100, 120601 (2008)

    Article  ADS  Google Scholar 

  14. A. Ramírez-Hernández, H. Larralde, F. Leyvraz, Phys. Rev. E 78, 061133 (2008)

    Article  ADS  Google Scholar 

  15. A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Lynden-Bell, R. Wood, Mon. Not. R. Astron. Soc. 138, 495 (1968)

    Article  ADS  Google Scholar 

  17. D. Lynden-Bell, Physica A 263, 293 (1999)

    Article  ADS  Google Scholar 

  18. F. Bouchet, S. Gupta, D. Mukamel, Physica A 389, 4389 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Z.-Y. Yang, J.-X. Hou, Mod. Phys. Lett. B 33, 1950072 (2019)

    Article  ADS  Google Scholar 

  20. Z.-Y. Yang, J.-X. Hou, Eur. Phys. J. B 92, 170 (2019)

    Article  ADS  Google Scholar 

  21. V.V. Hovhannisyan, N.S. Ananikian, A. Campa, S. Ruffo, Phys. Rev. E 96, 062103 (2017)

    Article  ADS  Google Scholar 

  22. T.M. Rocha Filho, C.H. Silvestre, M.A. Amato, Commun. Nonlinear Sci. Numer. Simul. 59, 190 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Vulpiani, F. Cecconi, M. Cencini, A. Puglisi, D. Vergni,Large Deviations in Physics (Springer, Berlin, Heidelberg, 2014)

  24. J.-X. Hou, Phys. Rev. E 99, 052114 (2019)

    Article  ADS  Google Scholar 

  25. V.V. Prasad, A. Campa, D. Mukamel, S. Ruffo, Phys. Rev. E 100, 052135 (2019)

    Article  ADS  Google Scholar 

  26. A. Campa, G. Gori, V. Hovhannisyan, S. Ruffo, A. Trombettoni, J. Phys. A 52, 344002 (2019)

    Article  MathSciNet  Google Scholar 

  27. J.-X. Hou, X.-C. Yu, J.-M. Hou, Int. J. Theor. Phys. 55, 3923 (2016)

    Article  Google Scholar 

  28. J.-X. Hou, X.-C. Yu, Mod. Phys. Lett. B 32, 1850053 (2018)

    Article  ADS  Google Scholar 

  29. J.W. Britton, B.C. Sawyer, A.C. Keith, C.-C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Nature 484, 489 (2012)

    Article  ADS  Google Scholar 

  30. T. Graß, M. Lewenstein, EPJ Quantum Technol. 1, 8 (2014)

    Article  Google Scholar 

  31. M. Kac, G.E. Uhlenbeck, P.C. Hemmer, J. Math. Phys. 4, 216 (1963)

    Article  ADS  Google Scholar 

  32. M. Kardar, Phys. Rev. B 28, 244 (1983)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Xuan Hou.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, JX. From microcanonical ensemble to canonical ensemble: phase transitions of a spin chain with a long-range interaction. Eur. Phys. J. B 93, 82 (2020). https://doi.org/10.1140/epjb/e2020-10050-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10050-5

Keywords

Navigation