Skip to main content
Log in

Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass in an external homogeneous field

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We extend exactly solvable model of a one-dimensional non-relativistic canonical semiconfined quantum harmonic oscillator with a mass that varies with position to the case where an external homogeneous field is applied. The problem is still exactly solvable and the analytic expression of the wave functions of the stationary states is expressed by means of generalised Laguerre polynomials, too. Unlike the case without any external field, when the energy spectrum completely overlaps with the energy spectrum of the standard non-relativistic canonical quantum harmonic oscillator, the energy spectrum is now still equidistant but depends on the semiconfinement parameter a. We also compute probabilities of the transitions for the model under the external field and discuss limit cases for the energy spectrum, wave functions and probabilities of transitions, when the semiconfinement parameter a goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S G Joshi, J. Acoust. Soc. Am. 72, 1872 (1982)

    Article  ADS  Google Scholar 

  2. B D Zaitsev and I E Kuznetsova, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 701 (1996)

    Article  Google Scholar 

  3. W Krassowska and J C Neu, Biophys. J. 66, 1768 (1994)

    Article  ADS  Google Scholar 

  4. M Taleb, C Didierjean, C Jelsch, J P Mangeot, B Capelle and A Aubry, J. Crystal Growth 200, 575 (1999)

    Article  ADS  Google Scholar 

  5. T Stuyver, D Danovich, J Joy and S Shaik, WIREs Comput. Mol. Sci. e1438 (2019)

  6. M Aschi, R Spezia, A Di Nola and A Amadei, Chem. Phys. Lett. 344, 374 (2001)

    Article  ADS  Google Scholar 

  7. L Zhang and H-J Xie, Phys. Rev. B 68, 235315 (2003)

    Article  ADS  Google Scholar 

  8. L Zhang and H-J Xie, Mod. Phys. Lett. B 17, 347 (2003)

    Article  ADS  Google Scholar 

  9. L Zhang and H-J Xie, Physica E 22, 791 (2004)

    Article  ADS  Google Scholar 

  10. K Ganesan and R Gebarowski, Pramana – J. Phys. 48, 379 (1997)

    Google Scholar 

  11. M Hosseini, H Hassanabadi and S Hassanabadi, Pramana – J. Phys. 93, 16 (2019)

    Google Scholar 

  12. F Smallenburg, H Rao Vutukuri, A Imhof, A van Blaaderen and M Dijkstra, J. Phys.: Condens. Matter 24, 464113 (2012)

  13. Chao Zhang and Lu Huang, Physica A 389, 5769 (2010)

    Article  ADS  Google Scholar 

  14. P Pedram, Physica A 391, 2100 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. L-A Cotfas, Physica A 392, 371 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. E I Jafarov and J Van der Jeugt, Eur. Phys. J. Plus 136, 758 (2021)

  17. L D Landau and E M Lifshitz, Quantum mechanics: Non-relativistic theory (Pergamon Press, Oxford, England, 1991)

    MATH  Google Scholar 

  18. S C Bloch, Introduction to classical and quantum harmonic oscillators (Wiley, New York, 1997)

    Google Scholar 

  19. E P Wigner, Phys. Rev. 77, 711 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  20. Y Ohnuki and S Kamefuchi, Quantum field theory and parastatistics (Springer, New York, 1982)

    Book  Google Scholar 

  21. N Mukunda, E C G Sudarshan, J K Sharma and C L Mehta, J. Math. Phys. 21, 2386 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  22. J K Sharma, C L Mehta, N Mukunda and E C G Sudarshan, J. Math. Phys. 22, 78 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. E I Jafarov, S Lievens and J Van der Jeugt, J. Phys. A: Math. Theor. 41, 235301 (2008)

    Article  ADS  Google Scholar 

  24. R Koekoek, P A Lesky and R F Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues (Springer, Berlin, 2010)

    Book  Google Scholar 

  25. D J BenDaniel and C B Duke, Phys. Rev. 152, 683 (1966)

    Article  ADS  Google Scholar 

  26. T Gora and F Williams, Phys. Rev. 177, 1179 (1969)

    Article  ADS  Google Scholar 

  27. Q-G Zhu and H Kroemer, Phys. Rev. B 27, 3519 (1983)

    Article  ADS  Google Scholar 

  28. O von Roos, Phys. Rev. B 27, 7547 (1983)

    Article  ADS  Google Scholar 

  29. O Mustafa and S Habib Mazharimousavi, Int. J. Theor. Phys. 46, 1786 (2007)

    Article  Google Scholar 

  30. O Mustafa, Eur. Phys. J. Plus 134, 228 (2019)

    Article  Google Scholar 

  31. O Mustafa and Z Algadhi, Eur. Phys. J. Plus 135, 559 (2020)

    Article  Google Scholar 

  32. O Mustafa, Eur. Phys. J. Plus 136, 249 (2021)

    Article  Google Scholar 

  33. F D Nobre and M A Rego-Monteiro, Braz. J. Phys. 45, 79 (2015)

    Article  ADS  Google Scholar 

  34. S Zare and H Hassanabadi, Adv. High Energy Phys. 2016, 4717012 (2016)

    Article  Google Scholar 

  35. S Zare, M de Montigny and H Hassanabadi, J. Korean Phys. Soc. 70, 122 (2017)

    Article  ADS  Google Scholar 

  36. H Hassanabadi and S Zare, Eur. Phys. J. Plus 132, 49 (2017)

    Article  Google Scholar 

  37. H Hassanabadi and S Zare, Mod. Phys. Lett. A 32, 1750085 (2017)

    Article  ADS  Google Scholar 

  38. N Jamshir, B Lari and H Hassanabadi, Physica A 565, 125616 (2021)

    Article  Google Scholar 

  39. V Chithiika Ruby, M Senthilvelan and M Lakshmanan, J. Phys. A: Math. Theor. 45, 382002 (2012)

  40. A Abdellaoui and F Benamira, Phys. Scr. 94, 015201 (2019)

    Article  ADS  Google Scholar 

  41. A F Nikiforov and V B Uvarov, Special functions of mathematical physics: A unified introduction with applications (Birkhäuser, Basel, Switzerland, 1988)

    Book  Google Scholar 

  42. A P Prudnikov, Yu A Brychkov and O I Marichev, Integrals and series – v.2: Special functions (Gordon and Breach, Amsterdam, The Netherlands, 1992)

Download references

Acknowledgements

E I Jafarov acknowledges that this work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan - Grant No. EIF-KETPL-2-2015-1(25)-56/01/1. J Van der Jeugt was supported by the EOS Research Project 30889451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E I Jafarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarov, E.I., Van der Jeugt, J. Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass in an external homogeneous field. Pramana - J Phys 96, 35 (2022). https://doi.org/10.1007/s12043-021-02279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02279-7

Keywords

PACS Nos

Navigation