Skip to main content

Advertisement

Log in

Heat transfer enhancement in a power-law nanofluid flow between two rotating stretchable disks

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The advanced thermal characteristics of nanomaterials allow better heat transfer efficiency in engineering, industrial and technological processes. In this report, the outcome of a comparative analysis between the dynamics of blood carrying Cu nanoparticles and blood carrying single-walled carbon nanotubes (SWCNTs) due to the stretching and rotation of two disks at various levels of rotation, stretching, power-law index and heat source/sink is presented. By using appropriate similarity variables, the leading partial differential equations (PDEs) are altered into one-dimensional equations (ODEs). The resulting ODEs are handled using the shooting method. The impact of governing parameters on the boundary layer profiles is analysed graphically. Fluid velocity gets enhanced in three dimensions during the rotation of the disk, but they predict different behaviours for the stretching parameters of the upper and lower disks. The temperature decays for power-law index, rotation and stretching parameters. Also, the rates of heat transfer are more extensive for shear-thinning. Finally, the effects of the Cu–blood(blood) nanofluid are dominant over the base fluid (blood) and SWCNTs–blood nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Isaac Lare Animasaun, Alex. Eng. J. 55, 2375 (2016)

    Article  Google Scholar 

  2. M Jalil, S Asghar and S M Imran, Int. J. Heat Mass Transf. 65, 73 (2013)

    Article  Google Scholar 

  3. S Hina, J. Magn. Magn. Mater. 404, 148 (2016)

    Article  Google Scholar 

  4. T Hayat, M I Khan, A Alsaedi and M I Khan, J. Mol. Liq. 223, 960 (2016)

    Article  Google Scholar 

  5. S Qayyum, R Khan and H Habib, Int. J. Mech. Sci. 133, 1 (2017)

    Article  Google Scholar 

  6. S M Atif, S Hussain and M Saghee, Phys. Lett. A 383, 1187 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Usman, M I Khan, F Shah, S U Khan, A Ghaffari and Y M Chu, Numer. Meth. Partial Diff. Eq., https://doi.org/10.1002/num.22696(2020)

  8. T Abuldrazzaq, H Togun, H Alsulami, M Goodarzi and M R Safaei, Symmetry 12, 1088 (2020)

    Article  Google Scholar 

  9. S Longo and V Di Federico, Math. Probl. Eng. 2015, 286487 (2015)

  10. C Yao, B Li, H R Wei and J Lu, AIP Adv. 9, 115121 (2019)

    Article  ADS  Google Scholar 

  11. R B Kudenatti and N E Misbah, Sci. Rep. 10, 9445 (2020)

    Article  ADS  Google Scholar 

  12. Usman, P Lin and A Ghaffari, J. Therm. Anal. Calor., https://doi.org/10.1007/s10973-020-10142-x (2020)

  13. Usman, W Khan, I A Badruddin, A Ghaffari and H M Ali, Case Stud. Therm. Eng. (2020), https://doi.org/10.1016/j.csite.2020.100825 (2020)

  14. M S Abel, P S Datti and N Mahesha, Int. J. Heat Mass Transf. 52, 2902 (2009)

  15. G Mishra, S A Patel and R P Chhabra, Powder Technol., https://doi.org/10.1016/j.powtec.2019.10.055 (2019)

    Article  Google Scholar 

  16. Ying-Qing Song, B D Obideyi, Nehad Ali Shah, I L Animasaun, Y M Mahrous and Jae Dong Chung, Case Stud. Therm. Eng. 26, 101050 (2021)

  17. S U S Choi, Proc. Int. Mech. Eng. Congress 66, 99 (1995)

    Google Scholar 

  18. R J Tiwari and M K Das, Int. J. Heat Mass Transf. 50, 2002 (2007)

    Article  Google Scholar 

  19. J Buongiorno, J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  20. J Ahmed et al, Appl. Nanosci. 10, 5305 (2020)

    Article  ADS  Google Scholar 

  21. J Mackolil and B Mahanthesh, Appl. Nanosci., doi:10.1007/s13204-020-01631-4 (2021)

    Article  Google Scholar 

  22. W A Khan, Z H Khan and M Rahi, Appl. Nanosci. 4, 633 (2014)

    Article  ADS  Google Scholar 

  23. Y M Chu, M I Khan, N B Khan, S Kadry, S U Khan, I Tlili and M K Nayak, Int. Commun. Heat Mass Transf 118, 104893 (2020)

    Article  Google Scholar 

  24. N L Xu, H Xu and A Raees, Int. J. Heat Mass Transfer 125, 604 (2018)

    Article  Google Scholar 

  25. S M Hosseini, M R Safaei, P Estellé and S Hadi Jafarnia, J. Therm. Anal. Calorim.https://doi.org/10.1007/s10973-019-08813-5(2019)

  26. M Goodarzi, I Tlili, H Moria, T Abdullah Alkanhal, R Ellahi, A E Anqi and M Reza Safaei, Alex. Eng. J.https://doi.org/10.1016/j.aej.2020.08.003(2020)

  27. Olubode Kolade Koriko, Kolawole S Adegbie, Nehad Ali Shah, Isaac L Animasaun and M Adejoke Olotu, Numer. Meth., https://doi.org/10.1002/num.22754(2021)

  28. Thanaa Elnaqeeb, Isaac Lare Animasaun and Nehad Ali Shah, Z. Naturforsch. 76, 231 (2021)

  29. I L Animasaun, B Mahanthesh, A O Jagun, T D Bankole, R Sivaraj, Nehad Ali Shah and S Saleem, J. Heat Transf. 141, 022402 (2019)

  30. T Von Karman, J. Appl. Math. Mech. 1, 233 (1921)

    Google Scholar 

  31. Tasawar Hayat, Mehwish Javed, Maria Imtiaz and Ahmed Alsaedi, J. Mol. Liq., doi:10.1016/j.molliq.2017.05.024 (2017)

    Article  Google Scholar 

  32. A A Alqarni, B Alvero glu, P T Griffiths and S J Garrett, J. Non-Newtonian Fluid Mech., https://doi.org/10.1016/j.jnnfm.2019.104174(2019)

  33. Usman, P Lin, A Ghaffari and I Mustafa, Numer. Meth. Partial Differ. Equ.,https://doi.org/10.1002/num.22677 (2020)

  34. Usman, A Ghaffari and S Kausar, Numer. Meth. Partial Diff. Equ., https://doi.org/10.1002/num.22672 (2020)

  35. A H Majeed et al, Physica A, https://doi.org/10.1016/j.physa.2019.123182 (2019)

  36. M I Khan et alAppl. Nanosci. 10, 5469 (2020)

    Article  ADS  Google Scholar 

  37. M I Khan, F Alzahrani and A Hobiny, Appl. Nanosci., doi:10.1007/s13204-020-01586-6 (2020)

    Article  Google Scholar 

  38. Jawad Ahmed, Masood Khan and Latif Ahmad, Chin. J. Phys., doi:10.1016/j.cjph.2019.02.010 (2019)

    Article  Google Scholar 

  39. N S Khan, S Zuhra and Q Shah, Appl. Nanosci. 9, 1797 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through the general research groups program under grant number GRP/326/43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, Ghaffari, A., Muhammad, T. et al. Heat transfer enhancement in a power-law nanofluid flow between two rotating stretchable disks. Pramana - J Phys 96, 40 (2022). https://doi.org/10.1007/s12043-021-02272-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02272-0

Keywords

PACS Nos

Navigation