Skip to main content
Log in

Effect of electric field on the onset of Jeffery fluid convection in a heat-generating porous medium layer

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this analysis, the collective impact of external electric field and internal heat generation on the onset of thermal convection of Jeffery fluid in a porous matrix is investigated analytically. Utilising linear stability hypothesis reliant on the normal mode process, a dispersion relation is derived and this dispersion relation is investigated for stationary and oscillatory styles of convective activities. The results reveal that the stability of the system diminishes by increasing the Jeffery parameter \(\lambda \), the electric field parameter \(R_{E} \) and the internal heating parameter \(S_{H} \). It is also shown that the oscillatory style of convective movement has not been feasible for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K Vafai, Porous media: applications in biological systems and biotechnology (CRC Press, Boca Raton, 2010)

    Google Scholar 

  2. W C Tan, L H Saw, H S Thiam, J Xuan, Z Cai and M C Yew, Renew. Sustain. Energy Rev. 96, 181 (2018). https://doi.org/10.1016/j.rser.2018.07.032

    Article  Google Scholar 

  3. D B Ingham and I Pop, Transport phenomena in porous media (Elsevier, 1998)

  4. K Aziz, S Bories and M Combarnous, J. Can. Pet. Technol. 12, 41 (1973)

  5. A Bhattacharya and R Mahajan, J. Electron. Packag. 128, 259 (2006)

    Google Scholar 

  6. M C Kim and D Yadav, Transp. Porous Media 104, 407 (2014)

    MathSciNet  Google Scholar 

  7. C Horton and F Rogers Jr, J. Appl. Phys. 16, 367 (1945)

    ADS  MathSciNet  Google Scholar 

  8. E Lapwood, Math. Proc. Camb. Philos. Soc. 44, 508 (1948)

    ADS  MathSciNet  Google Scholar 

  9. D A Nield, Water Resour. Res. 4, 553 (1968)

    ADS  Google Scholar 

  10. D A Nield, J. Fluid Mech. 81, 513 (1977)

    ADS  Google Scholar 

  11. D A Nield, Int. J. Heat Mass Transf. 34, 87 (1991)

    Google Scholar 

  12. N Rudraiah, B Veerappa and S B Rao, Int. J. Heat Mass Transf. 25, 1147 (1982)

    Google Scholar 

  13. N Rudraiah, P N Kaloni and P V Radhadevi, Rheol. Acta 28, 48 (1989)

    Google Scholar 

  14. D A S Rees, A Selim and J Ennis-King, Emerging topics in heat and mass transfer in porous media edited by P Vadasz (Springer, 2008) p. 85

  15. D A S Rees and I Pop, Transport phenomena in porous media III (Elsevier, 2005)

  16. D A S Rees, L Storesletten and A Postelnicu, Transp. Porous Media 62, 139 (2006)

    MathSciNet  Google Scholar 

  17. D A S Rees and A Postelnicu, Int. J. Heat Mass Transf. 44, 4127 (2001)

    Google Scholar 

  18. I S Shivakumara, M Savitha, K B Chavaraddi and N Devaraju, Meccanica 44, 225 (2009)

    Google Scholar 

  19. I S Shivakumara, A Mamatha and M Ravisha, J. Eng. Math. 67, 317 (2010)

    Google Scholar 

  20. B S Bhadauria, P G Siddheshwar, J Kumar and O P Suthar, Transp. Porous Media 92, 633 (2012)

    MathSciNet  Google Scholar 

  21. B S Bhadauria and P Kiran, Adv. Sci. Lett. 20, 903 (2014)

    Google Scholar 

  22. D Yadav, J. Appl. Comput. Mech. 6, 699 (2020), https://doi.org/10.22055/jacm.2019.31137.1833

  23. D Yadav and J Lee, J. Nanofluids 4, 335 (2015), https://doi.org/10.1166/jon.2015.1159

    Article  Google Scholar 

  24. D Yadav, R Bhargava, G S Agrawal, N Yadav, J Lee and M C Kim, Microfluid Nanofluid 16, 425 (2014), https://doi.org/10.1007/s10404-013-1234-5

    Article  Google Scholar 

  25. D Yadav, J Lee and H H Cho, J. Braz. Soc. Mech. Sci. Eng. 38, 2299 (2016), https://doi.org/10.1007/s40430-016-0505-y

    Article  Google Scholar 

  26. D Yadav, U S Mahabaleshwar, A Wakif and R Chand, Int. Commun. Heat Mass. 122, 105165 (2021), https://doi.org/10.1016/j.icheatmasstransfer.2021.105165

    Article  Google Scholar 

  27. A Benerji Babu, R Ravi and S G Tagare, Commun. Nonlinear Sci. Numer. Simul. 17, 5042 (2012), https://doi.org/10.1016/j.cnsns.2012.04.014

  28. C Jiang, E Shi, Z Hu, X Zhu and N Xie, Int. J. Heat Mass Transf. 91, 98 (2015)

    Google Scholar 

  29. M Celli, A Barletta and D Rees, Transp. Porous Media 119, 539 (2017)

    MathSciNet  Google Scholar 

  30. G C Rana, R C Thakur and S K Kango, J. Porous Media 17, 657 (2014)

  31. R Chand, G C Rana and D Yadav, J. Theor. Appl. Mech.-Pol. 47, 69 (2017)

    Google Scholar 

  32. R Chand, D Yadav and G C Rana, J. Porous Media 20, 635 (2017)

  33. P Akbarzadeh and O Mahian, J. Mol. Liq. 272, 344 (2018)

    Google Scholar 

  34. A Mahajan and R Nandal, Int. J. Heat Mass Transf. 115, 235 (2017)

    Google Scholar 

  35. A Mahajan and M K Sharma, J. Porous Media 17, 439 (2014)

    Google Scholar 

  36. D A Nield and A Bejan, Convection in porous media (Springer, 2006)

  37. P Vadasz, Fluid flow and heat transfer in rotating porous media (Springer, 2016)

  38. D Yadav, Hydrodynamic and hydromagnetic instability in nanofluids (Lap Lambert Academic Publishing, 2014)

  39. B Straughan, Stability and wave motion in porous media (Springer Science & Business Media, 2008)

  40. R Gasser and M Kazimi, J. Heat Transfer 98, 49 (1976)

    Google Scholar 

  41. A Khalili and I S Shivakumara, Phys. Fluids 10, 315 (1998)

    ADS  Google Scholar 

  42. A Nouri-Borujerdi, A R Noghrehabadi and D A S Rees, Int. J. Therm. Sci. 47, 1020 (2008)

    Google Scholar 

  43. S Rionero and B Straughan, Int. J. Eng. Sci. 28, 497 (1990)

    Google Scholar 

  44. U S Mahabaleshwar, D Basavaraja, S Wang, G Lorenzini and E Lorenzini, Int. J. Heat Mass Transf. 111, 651 (2017)

    Google Scholar 

  45. D Yadav, Revista Cubana de Física 37, 24 (2020)

    Google Scholar 

  46. D Yadav, Heat Transf. Asian Res. 49, 1170 (2020). https://doi.org/10.1002/htj.21657

    Article  Google Scholar 

  47. L Storesletten and D A S Rees, Fluids 4, 75 (2019)

    Google Scholar 

  48. C Hemanthkumar, I S Shivakumara and B Rushikumar, Darcy–Bénard convection with internal heating and a thermal nonequilibrium—A numerical study (Advances in Fluid Dynamics, Lecture Notes in Mechanical Engineering) edited by B R Kumar, R Sivaraj, J Prakash (Springer, 2021) p. 627

  49. R F Probstein and R E Hicks, Science 260, 498 (1993)

    ADS  Google Scholar 

  50. F Lai and K-W Lai, Dry. Technol. 20, 1393 (2002)

    Google Scholar 

  51. W Gao, M Senel, G Yel, H M Baskonus and B Senel, AIMS Math. 5, 1881 (2020)

    MathSciNet  Google Scholar 

  52. H Bulut, T A Sulaiman and H M Baskonus, Opt. Quantum Electron. 50, 1 (2018)

    Google Scholar 

  53. O A Ilhan, T A Sulaiman, H Bulut and H M Baskonus, Eur. Phys. J. Plus 133, 1 (2018)

    Google Scholar 

  54. R Moreno, E Bonet, O Trevisan, K Vafai and P Shivakumar, Electric alternating current effects on flow of oil and water in porous media, in: Proceedings of the International Conference on Porous Media and Their Applications in Science, Engineering and Industry (Hawaiir, 1996), p 147

  55. N Rudraiah and M Gayathri, J. Heat Transfer 131, 101009 (2009)

  56. I S Shivakumara, C-O Ng and M Nagashree, Int. J. Eng. Sci. 49, 646 (2011)

    Google Scholar 

  57. D Yadav, J Lee and H H Cho, J. Appl. Fluid Mech. 9, 2123 (2016), https://doi.org/10.18869/acadpub.jafm.68.236.25140

    Article  Google Scholar 

  58. R Chand, G C Rana and D Yadav, J. Appl. Fluid Mech 9, 1081 (2016), https://doi.org/10.18869/acadpub.jafm.68.228.24858

    Article  Google Scholar 

  59. D Yadav, J. Appl. Fluid Mech. 10, 763 (2017), https://doi.org/10.18869/acadpub.jafm.73.240.27475

    Article  Google Scholar 

  60. J A Eastman, S Choi, S Li, W Yu and L Thompson, Appl. Phys. Lett. 78, 718 (2001)

    ADS  Google Scholar 

  61. N Santhosh, G Radhakrishnamacharya and A J Chamkha, J. Porous Media 18, 71 (2015)

    Google Scholar 

  62. T Hayat, S Qayyum, M Imtiaz and A Alsaedi, PLoS One 11, e0148662 (2016)

  63. O Ojjela, A Raju and N N Kumar, J. Mech. 35, 657 (2019)

    Google Scholar 

  64. S Nallapu and G Radhakrishnamacharya, Int. J. Eng. Math. 2014, 713831 (2014)

  65. M Kahshan, D Lu and A Siddiqui, Sci. Rep. 9, 1 (2019)

    Google Scholar 

  66. X Guo, J Zhou, H Xie and Z Jiang, Math. Probl. Eng. 2018, 6014082 (2018)

  67. K Ahmad, Z Hanouf and A Ishak, AIP Adv. 6, 035024 (2016)

    ADS  Google Scholar 

  68. M Bhatti and M A Abbas, Alex. Eng. J. 55, 1017 (2016)

    Google Scholar 

  69. K Vajravelu, S Sreenadh and P Lakshminarayana, Commun. Nonlinear Sci. Numer. Simul. 16, 3107 (2011)

    ADS  MathSciNet  Google Scholar 

  70. K Mahmood, M N Sadiq, M Sajid and N Ali, J. Braz. Soc. Mech. Sci. Eng. 41, 65 (2019)

    Google Scholar 

  71. K Ramesh, D Tripathi, O A Bég and A Kadir, Iran. J. Sci. Technol.-Trans. Mech. Eng. 43, 675 (2019)

    Google Scholar 

  72. N A M Noor, S Shafie and M A Admon, Phys. Scr. 95, 105213 (2020)

    ADS  Google Scholar 

  73. K Naganthran, R Nazar and I Pop, J. Braz. Soc. Mech. Sci. Eng. 41, 1 (2019)

    Google Scholar 

  74. J Martinez-Mardones and C Perez-Garcia, J. Phys. Condens. Matter 2, 1281 (1990)

    ADS  Google Scholar 

  75. P K Gautam, G C Rana and H Saxena, J. Porous Media 23, 1043 (2020)

    Google Scholar 

  76. D Yadav, Heat Transf. Asian Res.,https://doi.org/10.1002/htj.22090 (2021)

  77. D Yadav, J. Appl. Fluid Mech. 11, 1679 (2018), https://doi.org/10.29252/jafm.11.06.29048

    Article  Google Scholar 

  78. D Yadav, A Wakif, Z Boulahia and R Sehaqui, J. Nanofluids 8, 117 (2019), https://doi.org/10.1166/jon.2019.1558

    Article  Google Scholar 

  79. L D Landau, J Bell, M Kearsley, L Pitaevskii, E Lifshitz and J Sykes, Electrodynamics of continuous media (Elsevier, 2013)

  80. P Roberts, Q. J. Mech. Appl. Math. 22, 211 (1969)

    Google Scholar 

  81. D Yadav, R Mohamed, H H Cho and J Lee, J. Appl. Fluid Mech. 9, 2379 (2016), https://doi.org/10.18869/acadpub.jafm.68.236.25048

    Article  Google Scholar 

  82. D Yadav, G Agrawal and R Bhargava, Int. J. Eng. Sci. 49, 1171 (2011), https://doi.org/10.1016/j.ijengsci.2011.07.002

    Article  Google Scholar 

  83. D Yadav, Revista Cubana de Física 35, 108 (2018)

    Google Scholar 

  84. S Chandrasekhar, Hydrodynamic and hydromagnetic stability (Dover Publication, 2013)

  85. D Yadav and M Maqhusi, Asia-Pac. J. Chem. Eng. 15, e2514 (2020), https://doi.org/10.1002/apj.2514

    Article  Google Scholar 

  86. D Yadav, Heat Transf. Asian Res. 49, 3161 (2020), https://doi.org/10.1002/htj.21767

    Article  Google Scholar 

  87. D Yadav, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235, 999 (2020), https://doi.org/10.1177/0954406220942551

  88. D A Nield and A V Kuznetsov, Eur. J. Mech. B Fluids 29, 217 (2010)

    ADS  MathSciNet  Google Scholar 

  89. I S Shivakumara, N Rudraiah, J Lee and K Hemalatha, Transp. Porous Media 90, 509 (2011)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D. Effect of electric field on the onset of Jeffery fluid convection in a heat-generating porous medium layer. Pramana - J Phys 96, 19 (2022). https://doi.org/10.1007/s12043-021-02242-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02242-6

Keywords

PACS Nos

Navigation