Skip to main content
Log in

Efficient method for solving variable-order pantograph models

  • Review article
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper shows how to solve variable-order pantograph-delay differential equations (VO-PDDEs) and variable-order pantograph Volterra delay integro-differential equations (VO-VDIDEs) using shifted fractional Gegenbauer operational matrices (SFGOMs) of differentiation and integration in conjunction with the spectral collocation method. In these equations, the fractional derivatives of variable order are represented in the Caputo sense. As a result of the proposed method, the considered problems are translated into an easy-to-solve system of algebraic equations. The proposed technique’s error bound is examined. To demonstrate the utility of the proposed method, numerical test problems are introduced and compared with other numerical methods in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R L Magin, Comput. Math. Appl. 59(5), 1586 (2010)

    Article  MathSciNet  Google Scholar 

  2. J R Ockendon and A B Tayler, Proc. R. Soc. London, Ser. A. Math. Phys. Sci. 322(1551), 447 (1971)

  3. J Patade and S Bhalekar, Phys. Sci. Rev. 2(9), 1 (2017)

  4. T Kato and J B McLeod, Fun. Diff. Equ. Bull. Am. Math. Soc. 77(6), 891 (1971)

  5. Y Yang and E Tohidi, Comput. Appl. Math. 38, 1 (2019)

    Article  MathSciNet  Google Scholar 

  6. Ş Yüzbaşı and M Sezer, Appl. Math. Modell. 39(21), 6529 (2015)

  7. M M Bahşi and M Çevik, J. Appl. Math. 2015, 1 (2015)

  8. M Heydari, G B Loghmani and S M Hosseini, Appl. Math. Modell. 37(14), 7789 (2013)

    Article  Google Scholar 

  9. SS Ezz-Eldien et al, Nonlinear Dyn. 100(4), 3785 (2020)

    Article  Google Scholar 

  10. P Rahimkhani, Y Ordokhani and E Babolian, J. Comput. Appl. Math. 309, 493 (2017)

    Article  MathSciNet  Google Scholar 

  11. S Nemati, P Lima and S Sedaghat, Appl. Numer. Math. 131, 174 (2018)

    Article  MathSciNet  Google Scholar 

  12. H Jafari, N A Tuan and R M Ganji, J. King Saud. Univ. Sci. 33(1), 101185 (2021)

  13. R Almeida, N R O Bastos and M T T Monteiro, Stat. Optim. Inf. Comput. 6(1), 4 (2018)

    Article  MathSciNet  Google Scholar 

  14. N Kadkhoda, Alex. Eng. J. 59(5), 3041 (2020)

    Article  MathSciNet  Google Scholar 

  15. R M Ganji, H Jafari and S Nemati, J. Comput. Appl. Math. 379, 112946 (2020)

  16. H Jafari, H Tajadodi and R M Ganji, Comput. Math. Meth. 1(5), 1055 (2019)

  17. K T Elgindy and K A Smith-Miles, J. Comput. Appl. Math. 237(1), 307 (2013)

    Article  MathSciNet  Google Scholar 

  18. M M Izadkhah and J Saberi-Nadjafi, Math. Methods Appl. Sci. 38(15), 3183 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. H F Ahmed, C. R. L. Acad. Bulg. Sci. 72(8), 1024 (2019)

    Google Scholar 

  20. H F Ahmed, M S M Bahgat and M Zaki, Pramana – J. Phys. 94(1), 72 (2020)

  21. T M El-Gindy, H F Ahmed and M B Melad, J. Egypt. Math. Soc. 26(1), 72 (2018)

    Article  Google Scholar 

  22. H F Ahmed and M B Melad, J. Fract. Calc. Appl. 9(2), 141 (2018)

    MathSciNet  Google Scholar 

  23. H F Ahmed and M B Melad, Prog. Fract. Differ. Appl. 4(3), 179 (2018)

    Article  Google Scholar 

  24. H F Ahmed, J. Taibah Univ. Sci. 12(5), 494 (2018)

    Article  Google Scholar 

  25. N Ozdemir, A Secer and M Bayram, J. Math. 7(6), 486 (2019)

    Google Scholar 

  26. H M Srivastava, F A Shah and R Abass, Russ. J. Math. Phys. 26(1), 77 (2019)

    Article  MathSciNet  Google Scholar 

  27. A A El-Kalaawy et al, Rom. Rep. Phys. 70(2), 90109 (2018)

  28. M A Abdelkawy, A M Lopes and M M Babatin, Chaos Solitons Fractals 124, 109721 (2020)

  29. C F Lorenzo and T T Hartley, Crit. Rev. Biomed. Eng. 35(6), 1 (2007)

  30. S G Samko, Anal. Math. 21(3), 213 (1995)

    Article  MathSciNet  Google Scholar 

  31. E H Doha, Comput. Math. Appl. 21(2–3), 115 (1991)

  32. K T Elgindy and K A Smith-Miles, J. Comput. Appl. Math. 242, 82 (2013)

    Article  MathSciNet  Google Scholar 

  33. Z M Odibat and N T Shawagfeh, Appl. Math. Comput. 186(1), 286 (2007)

    MathSciNet  Google Scholar 

  34. Z Avazzadeh, M H Heydari and M R Mahmoudi, Alex. Eng. J. 59(4), 2347 (2020)

    Article  Google Scholar 

  35. S S Ezz-Eldien and E H Doha, Numer. Algorithms 81(1), 57 (2019)

    Article  MathSciNet  Google Scholar 

  36. J Zhao, Y Cao and Y Xu, Int. J. Comput. Math. 94(5), 853 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina B Melad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H.F., Melad, M.B. Efficient method for solving variable-order pantograph models. Pramana - J Phys 95, 183 (2021). https://doi.org/10.1007/s12043-021-02218-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02218-6

Keywords

PACS Nos

Navigation