Skip to main content
Log in

Darcy–Forchheimer flow of Cu–water nanofluid over a vertical sheet owing to solar radiation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

An evaluation of the flow characteristic of Cu nanoparticle-based nanofluid natural convective drift along a vertical plane sheet in a Darcy–Forchheimer porous medium coexistent with solar radiation and the transverse magnetic field was done. Nonlinear PDEs, subject to their conformable boundary conditions, are incorporated into a system of nonlinear ODEs. The influence of relevant parameters on temperature and velocity distributions has been shown using tables and graphs. This investigation shows that both fluid velocity and temperature are enhanced by porosity and inertia parameters. Again, heat transfer rate is increased with increase in porosity and magnetic field parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S U S Choi and J A Eastman, Enhancing thermal conductivity of fluids with nanoparticles, The Proceedings of the ASME International Mechanical Engineering Congress and Exposition (San Francisco, USA, 1995) 231/MD 66, pp. 99–105

  2. K Das, P R Duari and P K Kundu, Arab. J. Sci. Eng. 39, 9015 (2014)

    Article  Google Scholar 

  3. C S K Raju and N Sandeep, J. Magn. Magn. Mater. 421, 216 (2017)

    Article  ADS  Google Scholar 

  4. E N Maraj, N S Akbar, Z Iqbal and E Azhar, J. Mol. Liq. 233, 334 (2017)

    Article  Google Scholar 

  5. S I Abdelsalam and M M Bhatti, Multidis. Model. Mater. Struct. 14, 530 (2018)

    Google Scholar 

  6. M Sheikholeslami and S A Shehzad, Int. J. Heat Mass Transf. 118, 182 (2018)

    Article  Google Scholar 

  7. H R Ashorynejad and A Zarghami, Int. J. Heat Mass Transf. 119, 247 (2018)

    Article  Google Scholar 

  8. S S Ghadikolaei, Kh Hosseinzadeh and D D Ganji, J. Mol. Liq. 272, 226 (2018)

    Article  Google Scholar 

  9. T S Krishnakumar, A Sheeba, V Mahesh and M J Prakash, Int. J. Refrigeration 102, 55 (2019)

    Article  Google Scholar 

  10. S Abbasi, Heat Mass Trans. 55, 891 (2019)

    Article  ADS  Google Scholar 

  11. A Asadi and F Pourfattah, Powder Technol. 343, 296 (2019)

    Article  Google Scholar 

  12. M Sheikholeslami and M Shamlooei, Int. J. Hydro. Energy 42, 5708 (2017)

    Article  Google Scholar 

  13. H Sajjadi, A A Delouei, M Atashafrooz and M Sheikholeslami, Int. J. Heat Mass Transf. 126, 489 (2018)

    Article  Google Scholar 

  14. M Sheikholeslami, Z Li and M Shamlooei, Phys. Lett. A 382, 1615 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. D S Bondarenko, M A Sheremet, H F Oztop and M E Ali, Int. J. Heat Mass Transf. 130, 564 (2019)

    Article  Google Scholar 

  16. T R Vijaybabu and S Dhinakaran, Int. J. Mech. Sci. 153, 500 (2019)

    Article  Google Scholar 

  17. I Hashim, A I Alsabery, M A Sheremet and A J Chamkha, Adv. Powder Technol. 30, 399 (2019)

    Article  Google Scholar 

  18. A Sarkar and P K Kundu, Heat Transf. Asian Res. 49, 289 (2020)

    Article  Google Scholar 

  19. P Forchheimer, Wasserbewegung durch boden, Z. Vereins Deutscher Ingenieure 45, 1782 (1901)

    Google Scholar 

  20. S Mukhopadhyay, P R De, K Bhattacharyya and G C Layek, Meccanica 47, 153 (2012)

    Article  MathSciNet  Google Scholar 

  21. T Hayat, F Haider, T Muhammad and A Alsaedi, PLOS One 12, e0179576 (2017)

    Article  Google Scholar 

  22. T Chakraborty, K Das and P K Kundu, J. Mech. Sci. Tech. 31, 2443 (2017)

    Article  Google Scholar 

  23. T Hayat, M I Khan, T A Khan, M I Khan, S Ahmad and A Alsaedi, J. Mol. Liq. 265, 629 (2018)

    Article  Google Scholar 

  24. A Dawar, Z Shah, W Khan, M Idrees and S Islam, Adv. Mech. Eng. 11, 1 (2019)

    Google Scholar 

  25. M Farooq, S Ahmad, M Javed and A Anjum, J. Heat Trans. 141(1), 012402 (2019)

  26. K G Kumar and A J Chamkha, Eur. Phys. J. Plus 134, 107 (2019)

    Article  Google Scholar 

  27. M A Sadiq, M Waqas, T Hayat and A Alsaedi, Appl. Nanosci. 9, 1155 (2019)

    Article  ADS  Google Scholar 

  28. M I Khan, F Shah, M Waqas, T Hayat and A Alsaedi, Int. J. Therm. Sci. 140, 20 (2019)

    Article  Google Scholar 

  29. M Saleem, M N Tufail and Q A Chaudhry, Pramana – J. Phys. 95: 28 (2021)

    Google Scholar 

  30. B Nayak and S R Mishra, Pramana – J. Phys. 95: 29 (2021)

    Google Scholar 

  31. A K Alzahrani, M Z Ullah, A S Alshomrani and T Gul, Case Stud. Therm. Eng. 26, 100955 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Kundu, P.K. Darcy–Forchheimer flow of Cu–water nanofluid over a vertical sheet owing to solar radiation. Pramana - J Phys 95, 177 (2021). https://doi.org/10.1007/s12043-021-02214-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02214-w

Keywords

Navigation